scholarly journals αE-catenin actin-binding domain alters actin filament conformation and regulates binding of nucleation and disassembly factors

2013 ◽  
Vol 24 (23) ◽  
pp. 3710-3720 ◽  
Author(s):  
Scott D. Hansen ◽  
Adam V. Kwiatkowski ◽  
Chung-Yueh Ouyang ◽  
HongJun Liu ◽  
Sabine Pokutta ◽  
...  

The actin-binding protein αE-catenin may contribute to transitions between cell migration and cell–cell adhesion that depend on remodeling the actin cytoskeleton, but the underlying mechanisms are unknown. We show that the αE-catenin actin-binding domain (ABD) binds cooperatively to individual actin filaments and that binding is accompanied by a conformational change in the actin protomer that affects filament structure. αE-catenin ABD binding limits barbed-end growth, especially in actin filament bundles. αE-catenin ABD inhibits actin filament branching by the Arp2/3 complex and severing by cofilin, both of which contact regions of the actin protomer that are structurally altered by αE-catenin ABD binding. In epithelial cells, there is little correlation between the distribution of αE-catenin and the Arp2/3 complex at developing cell–cell contacts. Our results indicate that αE-catenin binding to filamentous actin favors assembly of unbranched filament bundles that are protected from severing over more dynamic, branched filament arrays.

1994 ◽  
Vol 126 (5) ◽  
pp. 1231-1240 ◽  
Author(s):  
A R Menkel ◽  
M Kroemker ◽  
P Bubeck ◽  
M Ronsiek ◽  
G Nikolai ◽  
...  

Vinculin, a major structural component of vertebrate cell-cell and cell-matrix adherens junctions, has been found to interact with several other junctional components. In this report, we have identified and characterized a binding site for filamentous actin. These results included studies with gizzard vinculin, its proteolytic head and tail fragments, and recombinant proteins containing various gizzard vinculin sequences fused to the maltose binding protein (MBP) of Escherichia coli. In cosedimentation assays, only the vinculin tail sequence mediated a direct interaction with actin filaments. The binding was saturable, with a dissociation constant value in the micromolar range. Experiments with deletion clones localized the actin-binding domain to a region confined by residues 893-1016 in the 170-residue-long carboxyterminal segment, while the proline-rich hinge connecting the globular head to the rodlike tail was not required for this interaction. In fixed and permeabilized cells (cell models), as well as after microinjection, proteins containing the actin-binding domain specifically decorated stress fibers and the cortical network of fibroblasts and epithelial cells, as well as of brush border type microvilli. These results corroborated the sedimentation experiments. Our data support and extend previous work showing that vinculin binds directly to actin filaments. They are consistent with a model suggesting that in adhesive cells, the NH2-terminal head piece of vinculin directs this molecule to the focal contact sites, while its tail segment causes bundling of the actin filament ends into the characteristic spear tip-shaped structures.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hanshuang Shao ◽  
Bentley Wingert ◽  
Astrid Weins ◽  
Martin R. Pollak ◽  
Carlos Camacho ◽  
...  

Abstract Natural mutations such as lysine 255 to glutamic acid (K to E), threonine 259 to isoleucine (T to I) and serine 262 to proline (S to P) that occur within the actin binding domain of alpha-actinin-4 (ACTN4) cause an autosomal dominant form of focal segmental glomerulosclerosis (FSGS) in affected humans. This appears due to elevated actin binding propensity in podocytes resulting in a ‘frozen’ cytoskeleton. What is challenging is how this cellular behavior would be compatible with other cell functions that rely on cytoskeleton plasticity. Our previous finding revealed that wild type ACTN4 can be phosphorylated at tyrosine 4 and 31 upon stimulation by epidermal growth factor (EGF) to reduce the binding to actin cytoskeleton. We queried whether the elevated actin binding activity of FSGS mutants can be downregulated by EGF-mediated phosphorylation, to discern a mechanism by which the actin-cytoskeleton can be released in FSGS. In this manuscript, we first constructed variants with Y4/31E to mimic the phosphorylation at tyrosines 4 and 31 based on earlier modeling simulations that predicted that this would bury the actin binding domains and lead to a decrease in actin binding activity. We found that Y4/31E significantly reduced the actin binding activity of K255E, T259I and S262P, dramatically preventing them from aggregating in, and inhibiting motility of, podocytes, fibroblasts and melanoma cells. A putative kinase target site at Y265 in the actin binding domain was also generated as a phosphomimetic ACTN4 Y265E that demonstrated even greater binding to actin filaments than K255E and the other FSGS mutants. That the tyrosine kinase regulation of FSGS mutation binding to actin filaments can occur in cells was shown by phosphorylation on Y4 and Y31 of the K225E after extended exposure of cells to EGF, with a decrease in ACTN4 aggregates in fibroblasts. These findings will provide evidence for targeting the N-termini of FSGS ACTN4 mutants to downregulate their actin binding activities for ameliorating the glomerulosclerotic phenotype of patients.


1997 ◽  
Vol 139 (2) ◽  
pp. 387-396 ◽  
Author(s):  
Dorit Hanein ◽  
Paul Matsudaira ◽  
David J. DeRosier

Fimbrin belongs to a superfamily of actin cross-linking proteins that share a conserved 27-kD actin-binding domain. This domain contains a tandem duplication of a sequence that is homologous to calponin. Calponin homology (CH) domains not only cross-link actin filaments into bundles and networks, but they also bind intermediate filaments and some signal transduction proteins to the actin cytoskeleton. This fundamental role of CH domains as a widely used actin-binding domain underlines the necessity to understand their structural interaction with actin. Using electron cryomicroscopy, we have determined the three-dimensional structure of F-actin and F-actin decorated with the NH2-terminal CH domains of fimbrin (N375). In a difference map between actin filaments and N375-decorated actin, one end of N375 is bound to a concave surface formed between actin subdomains 1 and 2 on two neighboring actin monomers. In addition, a fit of the atomic model for the actin filament to the maps reveals the actin residues that line, the binding surface. The binding of N375 changes actin, which we interpret as a movement of subdomain 1 away from the bound N375. This change in actin structure may affect its affinity for other actin-binding proteins and may be part of the regulation of the cytoskeleton itself. Difference maps between actin and actin decorated with other proteins provides a way to look for novel structural changes in actin.


2007 ◽  
Vol 64 (11) ◽  
pp. 822-832 ◽  
Author(s):  
Brian M. Burkel ◽  
George von Dassow ◽  
William M. Bement

1988 ◽  
Vol 106 (3) ◽  
pp. 805-812 ◽  
Author(s):  
H L Yin ◽  
K Iida ◽  
P A Janmey

Gelsolin is a Ca2+- and polyphosphoinositide-modulated actin-binding protein which severs actin filaments, nucleates actin assembly, and caps the "barbed" end of actin filaments. Proteolytic cleavage analysis of human plasma gelsolin has shown that the NH2-terminal half of the molecule severs actin filaments almost as effectively as native gelsolin in a Ca2+-insensitive but polyphosphoinositide-inhibited manner. Further proteolysis of the NH2-terminal half generates two unique fragments (CT14N and CT28N), which have minimal severing activity. Under physiological salt conditions, CT14N binds monomeric actin coupled to Sepharose but CT28N does not. In this paper, we show that CT28N binds stoichiometrically and with high affinity to actin subunits in filaments, suggesting that it preferentially recognizes the conformation of polymerized actin. Analysis of the binding data shows that actin filaments have one class of CT28N binding sites with Kd = 2.0 X 10(-7) M, which saturates at a CT28N/actin subunit ratio of 0.8. Binding of CT28N to actin filaments is inhibited by phosphatidylinositol 4,5-bisphosphate micelles. In contrast, neither CT14N nor another actin-binding domain located in the COOH-terminal half of gelsolin form stable stoichiometric complexes with actin along the filaments, and their binding to actin monomers is not inhibited by PIP2. Based on these observations, we propose that CT28N is the polyphosphoinositide-regulated actin-binding domain which allows gelsolin to bind to actin subunits within a filament before serving.


1996 ◽  
Vol 133 (1) ◽  
pp. 61-74 ◽  
Author(s):  
L G Tilney ◽  
M S Tilney ◽  
G M Guild

Growing the intracellular bridges that connect nurse cells with each o ther and to the developing oocyte is vital for egg development. These ring canals increase from 0.5 microns in diameter at stage 2 to 10 microns in diameter at stage 11. Thin sections cut horizontally as you would cut a bagel, show that there is a layer of circumferentially oriented actin filaments attached to the plasma membrane at the periphery of each canal. By decoration with subfragment 1 of myosin we find actin filaments of mixed polarities in the ring such as found in the "contractile ring" formed during cytokinesis. In vertical sections through the canal the actin filaments appear as dense dots. At stage 2 there are 82 actin filaments in the ring, by stage 6 there are 717 and by stage 10 there are 726. Taking into account the diameter, this indicates that there is 170 microns of actin filaments/canal at stage 2 (pi x 0.5 microns x 82), 14,000 microns at stage 9 and approximately 23,000 microns at stage 11 or one inch of actin filament! The density of actin filaments remains unchanged throughout development. What is particularly striking is that by stages 4-5, the ring of actin filaments has achieved its maximum thickness, even though the diameter has not yet increased significantly. Thereafter, the diameter increases. Throughout development, stages 2-11, the canal length also increases. Although the density (number of actin filaments/micron2) through a canal remains constant from stage 5 on, the actin filaments appear as a net of interconnected bundles. Further information on this net of bundles comes from studying mutant animals that lack kelch, a protein located in the ring canal that has homology to the actin binding protein, scruin. In this mutant, the actin filaments form normally but individual bundles that comprise the fibers of the net are not bound tightly together. Some bundles enter into the ring canal lumen but do not completely occlude the lumen. all these observations lay the groundwork for our understanding of how a noncontractile ring increases in thickness, diameter, and length during development.


2016 ◽  
Vol 13 (0) ◽  
pp. 321-331 ◽  
Author(s):  
Keitaro Shibata ◽  
Akira Nagasaki ◽  
Hiroyuki Adachi ◽  
Taro Q. P. Uyeda

Sign in / Sign up

Export Citation Format

Share Document