actin binding domain
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 32)

H-INDEX

52
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Cao Nguyen Duong ◽  
Randy Brückner ◽  
Martina Schmitt ◽  
Astrid F. Nottebaum ◽  
Laura Braun ◽  
...  

Cadherin-mediated cell adhesion requires anchoring via the β-catenin-α-catenin complex to the actin cytoskeleton, yet, α-catenin binds F-actin only weakly. A covalent fusion of VE-cadherin to α-catenin enhances actin anchorage in endothelial cells and strongly stabilizes endothelial junctions in vivo, blocking inflammatory responses. Here, we have analyzed the underlying mechanism. We found that VE-cadherin-α-catenin constitutively recruits the actin adaptor vinculin. However, removal of the vinculin binding region of α-catenin did not impair the ability of VE-cadherin-α-catenin to enhance junction integrity. Searching for an alternative explanation for the junction stabilizing mechanism, we found that an antibody-defined epitope, normally buried in a short α1-helix of the actin binding domain (ABD) of α-catenin, is openly displayed in junctional VE-cadherin-α-catenin chimera. This epitope, we found to become exposed in normal α-catenin upon triggering thrombin-induced tension across the VE-cadherin complex. These results suggest, that the VE-cadherin-α-catenin chimera stabilizes endothelial junctions due to conformational changes in the ABD of α-catenin, which support constitutive strong binding to actin.


2021 ◽  
Vol 4 (10) ◽  
pp. e202101014
Author(s):  
Corinne A Betts ◽  
Aarti Jagannath ◽  
Tirsa LE van Westering ◽  
Melissa Bowerman ◽  
Subhashis Banerjee ◽  
...  

Absence of dystrophin, an essential sarcolemmal protein required for muscle contraction, leads to the devastating muscle-wasting disease Duchenne muscular dystrophy. Dystrophin has an actin-binding domain, which binds and stabilises filamentous-(F)-actin, an integral component of the RhoA-actin-serum-response-factor-(SRF) pathway. This pathway plays a crucial role in circadian signalling, whereby the suprachiasmatic nucleus (SCN) transmits cues to peripheral tissues, activating SRF and transcription of clock-target genes. Given dystrophin binds F-actin and disturbed SRF-signalling disrupts clock entrainment, we hypothesised dystrophin loss causes circadian deficits. We show for the first time alterations in the RhoA-actin-SRF-signalling pathway, in dystrophin-deficient myotubes and dystrophic mouse models. Specifically, we demonstrate reduced F/G-actin ratios, altered MRTF levels, dysregulated core-clock and downstream target-genes, and down-regulation of key circadian genes in muscle biopsies from Duchenne patients harbouring an array of mutations. Furthermore, we show dystrophin is absent in the SCN of dystrophic mice which display disrupted circadian locomotor behaviour, indicative of disrupted SCN signalling. Therefore, dystrophin is an important component of the RhoA-actin-SRF pathway and novel mediator of circadian signalling in peripheral tissues, loss of which leads to circadian dysregulation.


2021 ◽  
Author(s):  
Corinne A Betts ◽  
Aarti Jagannath ◽  
Tirsa van Westering ◽  
Melissa Bowerman ◽  
Subhashis Banerjee ◽  
...  

Dystrophin is a sarcolemmal protein essential for muscle contraction and maintenance, absence of which leads to the devastating muscle wasting disease Duchenne muscular dystrophy (DMD). Dystrophin has an actin-binding domain, which specifically binds and stabilises filamentous (F)-actin, an integral component of the RhoA-actin-serum response factor (SRF)-pathway. The RhoA-actin-SRF-pathway plays an essential role in circadian signalling whereby the hypothalamic suprachiasmatic nucleus, transmits systemic cues to peripheral tissues, activating SRF and transcription of clock target genes. Given dystrophin binds F-actin and disturbed SRF-signalling disrupts clock entrainment, we hypothesised that dystrophin loss causes circadian deficits. Here we show for the first time alterations in the RhoA-actin-SRF-signalling-pathway, in both dystrophin-deficient myotubes and dystrophic mouse models. Specifically, we demonstrate reduced F/G-actin ratios and nuclear MRTF, dysregulation of core clock and downstream target-genes, and down-regulation of key circadian genes in muscle biopsies from DMD patients harbouring an array of mutations. Further, disrupted circadian locomotor behaviour was observed in dystrophic mice indicative of disrupted SCN signalling, and indeed dystrophin protein was absent in the SCN of dystrophic animals. Dystrophin is thus a critically important component of the RhoA-actin-SRF-pathway and a novel mediator of circadian signalling in peripheral tissues, loss of which leads to circadian dysregulation.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Irfan Saadi ◽  
Luke Wenger ◽  
Jeremy Goering ◽  
Yomna Badawi ◽  
Marta Stetsiv ◽  
...  

2021 ◽  
Vol 552 ◽  
pp. 59-65
Author(s):  
Naoki Hosokawa ◽  
Masahiro Kuragano ◽  
Atsuki Yoshino ◽  
Keitaro Shibata ◽  
Taro Q.P. Uyeda ◽  
...  

2021 ◽  
Vol 118 (13) ◽  
pp. e2025012118
Author(s):  
Bela Farago ◽  
Iain D. Nicholl ◽  
Shen Wang ◽  
Xiaolin Cheng ◽  
David J. E. Callaway ◽  
...  

As the core component of the adherens junction in cell–cell adhesion, the cadherin–catenin complex transduces mechanical tension between neighboring cells. Structural studies have shown that the cadherin–catenin complex exists as an ensemble of flexible conformations, with the actin-binding domain (ABD) of α-catenin adopting a variety of configurations. Here, we have determined the nanoscale protein domain dynamics of the cadherin–catenin complex using neutron spin echo spectroscopy (NSE), selective deuteration, and theoretical physics analyses. NSE reveals that, in the cadherin–catenin complex, the motion of the entire ABD becomes activated on nanosecond to submicrosecond timescales. By contrast, in the α-catenin homodimer, only the smaller disordered C-terminal tail of ABD is moving. Molecular dynamics (MD) simulations also show increased mobility of ABD in the cadherin–catenin complex, compared to the α-catenin homodimer. Biased MD simulations further reveal that the applied external forces promote the transition of ABD in the cadherin–catenin complex from an ensemble of diverse conformational states to specific states that resemble the actin-bound structure. The activated motion and an ensemble of flexible configurations of the mechanosensory ABD suggest the formation of an entropic trap in the cadherin–catenin complex, serving as negative allosteric regulation that impedes the complex from binding to actin under zero force. Mechanical tension facilitates the reduction in dynamics and narrows the conformational ensemble of ABD to specific configurations that are well suited to bind F-actin. Our results provide a protein dynamics and entropic explanation for the observed force-sensitive binding behavior of a mechanosensitive protein complex.


2021 ◽  
Vol 22 (2) ◽  
pp. 645
Author(s):  
Erumbi S. Rangarajan ◽  
Tina Izard

Vinculin and its heart-specific splice variant metavinculin are key regulators of cell adhesion processes. These membrane-bound cytoskeletal proteins regulate the cell shape by binding to several other proteins at cell–cell and cell–matrix junctions. Vinculin and metavinculin link integrin adhesion molecules to the filamentous actin network. Loss of both proteins prevents cell adhesion and cell spreading and reduces the formation of stress fibers, focal adhesions, or lamellipodia extensions. The binding of talin at cell–matrix junctions or of α-catenin at cell–cell junctions activates vinculin and metavinculin by releasing their autoinhibitory head–tail interaction. Once activated, vinculin and metavinculin bind F-actin via their five-helix bundle tail domains. Unlike vinculin, metavinculin has a 68-amino-acid insertion before the second α-helix of this five-helix F-actin–binding domain. Here, we present the full-length cryogenic electron microscopy structure of metavinculin that captures the dynamics of its individual domains and unveiled a hallmark structural feature, namely a kinked isoform-specific α-helix in its F-actin-binding domain. Our identified conformational landscape of metavinculin suggests a structural priming mechanism that is consistent with the cell adhesion functions of metavinculin in response to mechanical and cellular cues. Our findings expand our understanding of metavinculin function in the heart with implications for the etiologies of cardiomyopathies.


Science ◽  
2020 ◽  
Vol 370 (6520) ◽  
pp. eaba5528 ◽  
Author(s):  
Huapeng H. Yu ◽  
Jennifer A. Zallen

Epithelial structure is generated by the dynamic reorganization of cells in response to mechanical forces. Adherens junctions transmit forces between cells, but how cells sense and respond to these forces in vivo is not well understood. We identify a mechanotransduction pathway involving the Abl tyrosine kinase and Canoe/Afadin that stabilizes cell adhesion under tension at tricellular junctions in the Drosophila embryo. Canoe is recruited to tricellular junctions in response to actomyosin contractility, and this mechanosensitivity requires Abl-dependent phosphorylation of a conserved tyrosine in the Canoe actin-binding domain. Preventing Canoe tyrosine phosphorylation destabilizes tricellular adhesion, and anchoring Canoe at tricellular junctions independently of mechanical inputs aberrantly stabilizes adhesion, arresting cell rearrangement. These results identify a force-responsive mechanism that stabilizes tricellular adhesion under tension during epithelial remodeling.


Sign in / Sign up

Export Citation Format

Share Document