scholarly journals Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity

2017 ◽  
Vol 28 (2) ◽  
pp. 252-260 ◽  
Author(s):  
Travis R. Ruch ◽  
David M. Bryant ◽  
Keith E. Mostov ◽  
Joanne N. Engel

Pathogens can alter epithelial polarity by recruiting polarity proteins to the apical membrane, but how a change in protein localization is linked to polarity disruption is not clear. In this study, we used chemically induced dimerization to rapidly relocalize proteins from the cytosol to the apical surface. We demonstrate that forced apical localization of Par3, which is normally restricted to tight junctions, is sufficient to alter apical membrane identity through its interactions with phosphatidylinositol 3-kinase (PI3K) and the Rac1 guanine nucleotide exchange factor Tiam1. We further show that PI3K activity is required upstream of Rac1, and that simultaneously targeting PI3K and Tiam1 to the apical membrane has a synergistic effect on membrane remodeling. Thus, Par3 coordinates the action of PI3K and Tiam1 to define membrane identity, revealing a signaling mechanism that can be exploited by human mucosal pathogens.

2014 ◽  
Vol 25 (10) ◽  
pp. 1608-1619 ◽  
Author(s):  
Gus Lawrence ◽  
Christopher C. Brown ◽  
Blake A. Flood ◽  
Surya Karunakaran ◽  
Margarita Cabrera ◽  
...  

Maturation of organelles in the endolysosomal pathway requires exchange of the early endosomal GTPase Rab5/Vps21 for the late endosomal Rab7/Ypt7. The Rab exchange depends on the guanine nucleotide exchange factor activity of the Mon1-Ccz1 heterodimer for Ypt7. Here we investigate vacuole binding and recycling of Mon1-Ccz1. We find that Mon1-Ccz1 is absent on vacuoles lacking the phosphatidic acid phosphatase Pah1, which also lack Ypt7, the phosphatidylinositol 3-kinase Vps34, and the lipid phosphatidylinositol 3-phosphate (PI3P). Interaction of Mon1-Ccz1 with wild-type vacuoles requires PI3P, as shown in competition experiments. We also find that Mon1 is released from vacuoles during the fusion reaction and its release requires its phosphorylation by the type 1 casein kinase Yck3. In contrast, Mon1 is retained on vacuoles lacking Yck3 or when Mon1 phosphorylation sites are mutated. Phosphorylation and release of Mon1 is restored with addition of recombinant Yck3. Together the results show that Mon1 is recruited to endosomes and vacuoles by PI3P and, likely after activating Ypt7, is phosphorylated and released from vacuoles for recycling.


2012 ◽  
Vol 23 (14) ◽  
pp. 2723-2740 ◽  
Author(s):  
Steve Jean ◽  
Sarah Cox ◽  
Eric J. Schmidt ◽  
Fred L. Robinson ◽  
Amy Kiger

Cells rely on the coordinated regulation of lipid phosphoinositides and Rab GTPases to define membrane compartment fates along distinct trafficking routes. The family of disease-related myotubularin (MTM) phosphoinositide phosphatases includes catalytically inactive members, or pseudophosphatases, with poorly understood functions. We found that Drosophila MTM pseudophosphatase Sbf coordinates both phosphatidylinositol 3-phosphate (PI(3)P) turnover and Rab21 GTPase activation in an endosomal pathway that controls macrophage remodeling. Sbf dynamically interacts with class II phosphatidylinositol 3-kinase and stably recruits Mtm to promote turnover of a PI(3)P subpool essential for endosomal trafficking. Sbf also functions as a guanine nucleotide exchange factor that promotes Rab21 GTPase activation associated with PI(3)P endosomes. Of importance, Sbf, Mtm, and Rab21 function together, along with Rab11-mediated endosomal trafficking, to control macrophage protrusion formation. This identifies Sbf as a critical coordinator of PI(3)P and Rab21 regulation, which specifies an endosomal pathway and cortical control.


Oncogene ◽  
1999 ◽  
Vol 18 (41) ◽  
pp. 5680-5690 ◽  
Author(s):  
Shigeto Yoshii ◽  
Masamitsu Tanaka ◽  
Yoshirou Otsuki ◽  
Dong-Yu Wang ◽  
Rong-Jun Guo ◽  
...  

2015 ◽  
Vol 26 (6) ◽  
pp. 1119-1128 ◽  
Author(s):  
Bjorn D. M. Bean ◽  
Michael Davey ◽  
Jamie Snider ◽  
Matthew Jessulat ◽  
Viktor Deineko ◽  
...  

The retromer complex facilitates the sorting of integral membrane proteins from the endosome to the late Golgi. In mammalian cells, the efficient recruitment of retromer to endosomes requires the lipid phosphatidylinositol 3-phosphate (PI3P) as well as Rab5 and Rab7 GTPases. However, in yeast, the role of Rabs in recruiting retromer to endosomes is less clear. We identified novel physical interactions between retromer and the Saccharomyces cerevisiae VPS9-domain Rab5-family guanine nucleotide exchange factors (GEFs) Muk1 and Vps9. Furthermore, we identified a new yeast VPS9 domain-containing protein, VARP-like 1 (Vrl1), which is related to the human VARP protein. All three VPS9 domain–containing proteins show localization to endosomes, and the presence of any one of them is necessary for the endosomal recruitment of retromer. We find that expression of an active VPS9-domain protein is required for correct localization of the phosphatidylinositol 3-kinase Vps34 and the production of endosomal PI3P. These results suggest that VPS9 GEFs promote retromer recruitment by establishing PI3P-enriched domains at the endosomal membrane. The interaction of retromer with distinct VPS9 GEFs could thus link GEF-dependent regulatory inputs to the temporal or spatial coordination of retromer assembly or function.


2012 ◽  
Vol 23 (15) ◽  
pp. 2831-2844 ◽  
Author(s):  
Jos van Rijssel ◽  
Jeffrey Kroon ◽  
Mark Hoogenboezem ◽  
Floris P. J. van Alphen ◽  
Renske J. de Jong ◽  
...  

Leukocyte transendothelial migration involves the active participation of the endothelium through the formation of apical membrane protrusions that embrace adherent leukocytes, termed docking structures. Using live-cell imaging, we find that prior to transmigration, endothelial docking structures form around 80% of all neutrophils. Previously we showed that endothelial RhoG and SGEF control leukocyte transmigration. In this study, our data reveal that both full-length Trio and the first DH-PH (TrioD1) domain of Trio, which can activate Rac1 and RhoG, interact with ICAM-1 and are recruited to leukocyte adhesion sites. Moreover, upon clustering of ICAM-1, the Rho-guanine nucleotide exchange factor Trio activates Rac1, prior to activating RhoG, in a filamin-dependent manner. We further show that docking structure formation is initiated by ICAM-1 clustering into ring-like structures, which is followed by apical membrane protrusion. Interestingly, we find that Rac1 is required for ICAM-1 clustering, whereas RhoG controls membrane protrusion formation. Finally, silencing endothelial Trio expression or reducing TrioD1 activity without affecting SGEF impairs both docking structure formation and leukocyte transmigration. We conclude that Trio promotes leukocyte transendothelial migration by inducing endothelial docking structure formation in a filamin-dependent manner through the activation of Rac1 and RhoG.


2017 ◽  
Vol 37 (7) ◽  
Author(s):  
Lucas J. M. Bruurs ◽  
Susan Zwakenberg ◽  
Mirjam C. van der Net ◽  
Fried J. Zwartkruis ◽  
Johannes L. Bos

ABSTRACT Signaling by the small GTPase Cdc42 governs a diverse set of cellular processes that contribute to tissue morphogenesis. Since these processes often require highly localized signaling, Cdc42 activity must be clustered in order to prevent ectopic signaling. During cell polarization, apical Cdc42 signaling directs the positioning of the nascent apical membrane. However, the molecular mechanisms that drive Cdc42 clustering during polarity establishment are largely unknown. Here, we demonstrate that during cell polarization localized Cdc42 signaling is enabled via activity-dependent control of Cdc42 mobility. By performing photoconversion experiments, we show that inactive Cdc42-GDP is 30-fold more mobile than active Cdc42-GTP. This switch in apical mobility originates from a dual mechanism involving RhoGDI-mediated membrane dissociation of Cdc42-GDP and Tuba-mediated immobilization of Cdc42-GTP. Interference with either mechanism affects Cdc42 clustering and as a consequence impairs Cdc42-mediated apical membrane clustering. We therefore identify a molecular network, comprised of Cdc42, the guanine nucleotide exchange factor (GEF) Tuba, and RhoGDI, that enables differential diffusion of inactive and active Cdc42 and is required to establish localized Cdc42 signaling during enterocyte polarization.


Neuron ◽  
2001 ◽  
Vol 32 (3) ◽  
pp. 415-424 ◽  
Author(s):  
Dorit Parnas ◽  
A.Pejmun Haghighi ◽  
Richard D Fetter ◽  
Sang W Kim ◽  
Corey S Goodman

2013 ◽  
Vol 204 (1) ◽  
pp. 111-127 ◽  
Author(s):  
Ceniz Zihni ◽  
Peter M.G. Munro ◽  
Ahmed Elbediwy ◽  
Nicholas H. Keep ◽  
Stephen J. Terry ◽  
...  

Epithelial cells develop morphologically characteristic apical domains that are bordered by tight junctions, the apical–lateral border. Cdc42 and its effector complex Par6–atypical protein kinase c (aPKC) regulate multiple steps during epithelial differentiation, but the mechanisms that mediate process-specific activation of Cdc42 to drive apical morphogenesis and activate the transition from junction formation to apical differentiation are poorly understood. Using a small interfering RNA screen, we identify Dbl3 as a guanine nucleotide exchange factor that is recruited by ezrin to the apical membrane, that is enriched at a marginal zone apical to tight junctions, and that drives spatially restricted Cdc42 activation, promoting apical differentiation. Dbl3 depletion did not affect junction formation but did affect epithelial morphogenesis and brush border formation. Conversely, expression of active Dbl3 drove process-specific activation of the Par6–aPKC pathway, stimulating the transition from junction formation to apical differentiation and domain expansion, as well as the positioning of tight junctions. Thus, Dbl3 drives Cdc42 signaling at the apical margin to regulate morphogenesis, apical–lateral border positioning, and apical differentiation.


Sign in / Sign up

Export Citation Format

Share Document