scholarly journals Nup2 performs diverse interphase functions inAspergillus nidulans

2018 ◽  
Vol 29 (26) ◽  
pp. 3144-3154 ◽  
Author(s):  
Subbulakshmi Suresh ◽  
Sarine Markossian ◽  
Aysha H. Osmani ◽  
Stephen A. Osmani

The nuclear pore complex (NPC) protein Nup2 plays interphase nuclear transport roles and in Aspergillus nidulans also functions to bridge NPCs at mitotic chromatin for their faithful coinheritance to daughter G1 nuclei. In this study, we further investigate the interphase functions of Nup2 in A. nidulans. Although Nup2 is not required for nuclear import of all nuclear proteins after mitosis, it is required for normal G1 nuclear accumulation of the NPC nuclear basket–associated components Mad2 and Mlp1 as well as the THO complex protein Tho2. Targeting of Mlp1 to nuclei partially rescues the interphase delay seen in nup2 mutants indicating that some of the interphase defects in Nup2-deleted cells are due to Mlp1 mislocalization. Among the inner nuclear membrane proteins, Nup2 affects the localization of Ima1, orthologues of which are involved in nuclear movement. Interestingly, nup2 mutant G1 nuclei also exhibit an abnormally long period of extensive to-and-fro movement immediately after mitosis in a manner dependent on the microtubule cytoskeleton. This indicates that Nup2 is required to limit the transient postmitotic nuclear migration typical of many filamentous fungi. The findings reveal that Nup2 is a multifunctional protein that performs diverse functions during both interphase and mitosis in A. nidulans.

2000 ◽  
Vol 11 (2) ◽  
pp. 703-719 ◽  
Author(s):  
Susanne M. Steggerda ◽  
Ben E. Black ◽  
Bryce M. Paschal

Nuclear transport factor 2 (NTF2) is a soluble transport protein originally identified by its ability to stimulate nuclear localization signal (NLS)-dependent protein import in digitonin-permeabilized cells. NTF2 has been shown to bind nuclear pore complex proteins and the GDP form of Ran in vitro. Recently, it has been reported that NTF2 can stimulate the accumulation of Ran in digitonin-permeabilized cells. Evidence that NTF2 directly mediates Ran import or that NTF2 is required to maintain the nuclear concentration of Ran in living cells has not been obtained. Here we show that cytoplasmic injection of anti-NTF2 mAbs resulted in a dramatic relocalization of Ran to the cytoplasm. This provides the first evidence that NTF2 regulates the distribution of Ran in vivo. Moreover, anti-NTF2 mAbs inhibited nuclear import of both Ran and NLS-containing protein in vitro, suggesting that NTF2 stimulates NLS-dependent protein import by driving the nuclear accumulation of Ran. We also show that biotinylated NTF2-streptavidin microinjected into the cytoplasm accumulated at the nuclear envelope, indicating that NTF2 can target a binding partner to the nuclear pore complex. Taken together, our data show that NTF2 is an essential regulator of the Ran distribution in living cells and that NTF2-mediated Ran nuclear import is required for NLS-dependent protein import.


1995 ◽  
Vol 131 (3) ◽  
pp. 571-581 ◽  
Author(s):  
F Melchior ◽  
T Guan ◽  
N Yokoyama ◽  
T Nishimoto ◽  
L Gerace

Mediated import of proteins into the nucleus involves multiple cytosolic factors, including the small GTPase Ran. Whether Ran functions by interacting with other cytosolic proteins or components of the nuclear pore complex has been unclear. Furthermore, the precise transport step where Ran acts has not been determined. To address these questions, we have analyzed the binding interactions of Ran using permeabilized cells and isolated nuclear envelopes. By light and electron microscope immunolocalization, we have found that Ran accumulates specifically at the cytoplasmic surface of the nuclear pore complex when nuclear import in permeabilized cells is inhibited by nonhydrolyzable analogs of GTP. Ran associates with a peripheral pore complex region that is similar to the area where transport ligands accumulate by depletion of ATP, which arrests an early step of transport. Binding studies with isolated nuclear envelopes in the absence of added cytosol indicate that Ran-GTP directly interacts with a pore complex protein. Using blot overlay techniques, we detected a single prominent polypeptide of isolated nuclear envelopes that binds Ran-GTP. This corresponds to the 358-kD protein RanBP2, a Ran binding pore complex protein recently identified by two-hybrid screening. Thus, RanBP2 is likely to constitute the Ran-GTP-binding site detected at the cytoplasmic periphery of the pore complex. These data support a model in which initial ligand binding to the nuclear pore complex occurs at or near RanBP2, and that hydrolysis of GTP by Ran at this site serves to define commitment to the nuclear import pathway.


2002 ◽  
Vol 76 (17) ◽  
pp. 8787-8796 ◽  
Author(s):  
Kurt E. Gustin ◽  
Peter Sarnow

ABSTRACT Nucleocytoplasmic trafficking pathways and the status of nuclear pore complex (NPC) components were examined in cells infected with rhinovirus type 14. A variety of shuttling and nonshuttling nuclear proteins, using multiple nuclear import pathways, accumulated in the cytoplasm of cells infected with rhinovirus. An in vitro nuclear import assay with semipermeabilized infected cells confirmed that nuclear import was inhibited and that docking of nuclear import receptor-cargo complexes at the cytoplasmic face of the NPC was prevented in rhinovirus-infected cells. The relocation of cellular proteins and inhibition of nuclear import correlated with the degradation of two NPC components, Nup153 and p62. The degradation of Nup153 and p62 was not due to induction of apoptosis, because p62 was not proteolyzed in apoptotic HeLa cells, and Nup153 was cleaved to produce a 130-kDa cleavage product that was not observed in cells infected with poliovirus or rhinovirus. The finding that both poliovirus and rhinovirus cause inhibition of nuclear import and degradation of NPC components suggests that this may be a common feature of the replicative cycle of picornaviruses. Inhibition of nuclear import is predicted to result in the cytoplasmic accumulation of a large number of nuclear proteins that could have functions in viral translation, RNA synthesis, packaging, or assembly. Additionally, inhibition of nuclear import also presents a novel strategy whereby cytoplasmic RNA viruses can evade host immune defenses by preventing signal transduction into the nucleus.


2009 ◽  
Vol 10 (1) ◽  
pp. 74 ◽  
Author(s):  
Iris Ben-Efraim ◽  
Phyllis D Frosst ◽  
Larry Gerace

1995 ◽  
Vol 129 (4) ◽  
pp. 925-937 ◽  
Author(s):  
B M Paschal ◽  
L Gerace

Protein import into the nucleus is a multistep process that requires the activities of several cytosolic factors. In this study we have purified a cytosolic factor that interacts with the nuclear pore complex glycoprotein p62. Isolation involved biochemical complementation of cytosol depleted of this activity by preadsorption with recombinant p62 and the use of a novel flow cytometry-based assay for quantitation of nuclear import. The purified activity (NTF2) is an apparent dimer of approximately 14-kD subunits and is present at approximately 10(6) copies per cell. We obtained a cDNA encoding NTF2 and showed that the recombinant protein restores transport activity to p62-pretreated cytosol. Our data suggest that NTF2 acts at a relatively late stage of nuclear protein import, subsequent to the initial docking of nuclear import ligand at the nuclear envelope. NTF2 interacts with at least one additional cytosolic transport activity, indicating that it could be part of a multicomponent system of cytosolic factors that assemble at the pore complex during nuclear import.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Alyssa N. Coyne ◽  
Jeffrey D. Rothstein

AbstractNuclear pore complex injury has recently emerged as an early and significant contributor to familial and sporadic ALS disease pathogenesis. However, the molecular events leading to this pathological phenomenon characterized by the reduction of specific nucleoporins from neuronal nuclear pore complexes remain largely unknown. This is due in part to a lack of knowledge regarding the biological pathways and proteins underlying nuclear pore complex homeostasis specifically in human neurons. We have recently uncovered that aberrant nuclear accumulation of the ESCRT-III protein CHMP7 initiates nuclear pore complex in familial and sporadic ALS neurons. In yeast and non-neuronal mammalian cells, nuclear relocalization of CHMP7 has been shown to recruit the ESCRT-III proteins CHMP4B, CHMP2B, and VPS4 to facilitate nuclear pore complex and nuclear envelope repair and homeostasis. Here, using super resolution structured illumination microscopy, we find that neither CHMP4B nor CHMP2B are increased in ALS neuronal nuclei. In contrast, VPS4 expression is significantly increased in ALS neuronal nuclei prior to the emergence of nuclear pore injury in a CHMP7 dependent manner. However, unlike our prior CHMP7 knockdown studies, impaired VPS4 function does not mitigate alterations to the NPC and the integral transmembrane nucleoporin POM121. Collectively our data suggest that while alterations in VPS4 subcellular localization appear to be coincident with nuclear pore complex injury, therapeutic efforts to mitigate this pathogenic cascade should be targeted towards upstream events such as the nuclear accumulation of CHMP7 as we have previously described.


2020 ◽  
Vol 117 (45) ◽  
pp. 28344-28354 ◽  
Author(s):  
Lisa Miorin ◽  
Thomas Kehrer ◽  
Maria Teresa Sanchez-Aparicio ◽  
Ke Zhang ◽  
Phillip Cohen ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic that is a serious global health problem. Evasion of IFN-mediated antiviral signaling is a common defense strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to efficiently block STAT1 and STAT2 nuclear translocation in order to impair transcriptional induction of IFN-stimulated genes (ISGs). Our results demonstrate that the viral accessory protein Orf6 exerts this anti-IFN activity. We found that SARS-CoV-2 Orf6 localizes at the nuclear pore complex (NPC) and directly interacts with Nup98-Rae1 via its C-terminal domain to impair docking of cargo-receptor (karyopherin/importin) complex and disrupt nuclear import. In addition, we show that a methionine-to-arginine substitution at residue 58 impairs Orf6 binding to the Nup98-Rae1 complex and abolishes its IFN antagonistic function. All together our data unravel a mechanism of viral antagonism in which a virus hijacks the Nup98-Rae1 complex to overcome the antiviral action of IFN.


Sign in / Sign up

Export Citation Format

Share Document