scholarly journals The TIM22 complex mediates the import of Sideroflexins and is required for efficient mitochondrial one-carbon metabolism

2021 ◽  
pp. mbc.E20-06-0390
Author(s):  
Thomas D. Jackson ◽  
Daniella H. Hock ◽  
Kenji M. Fujihara ◽  
Catherine S. Palmer ◽  
Ann E. Frazier ◽  
...  

Acylglycerol Kinase (AGK) is a mitochondrial lipid kinase that contributes to protein biogenesis as a subunit of the TIM22 complex at the inner mitochondrial membrane. Mutations in AGK cause Sengers syndrome, an autosomal recessive condition characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy and lactic acidosis. We mapped the proteomic changes in Sengers patient fibroblasts and AGKKO cell lines to understand the effects of AGK dysfunction on mitochondria. This uncovered downregulation of a number of proteins at the inner mitochondrial membrane, including many SLC25 carrier family proteins, which are predicted substrates of the complex. We also observed downregulation of SFXN proteins, which contain five transmembrane domains, and show that they represent a novel class of TIM22 complex substrate. Perturbed biogenesis of SFXN proteins in cells lacking AGK reduces the proliferative capabilities of these cells in the absence of exogenous serine, suggesting that dysregulation of one carbon metabolism is a molecular feature in the biology of Sengers syndrome.

Author(s):  
Thomas D. Jackson ◽  
Daniella Hock ◽  
Catherine S. Palmer ◽  
Yilin Kang ◽  
Kenji M. Fujihara ◽  
...  

AbstractThe Acylglycerol Kinase (AGK) is a mitochondrial lipid kinase that contributes to protein biogenesis as a subunit of the TIM22 complex at the inner mitochondrial membrane. Mutations in AGK cause Sengers syndrome, an autosomal recessive condition characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy and lactic acidosis. We undertook proteomic profiling of Sengers patient fibroblasts and an AGKKO cell line to map the proteomic changes that ensue upon AGK dysfunction. This uncovered extensive remodelling of mitochondrial one-carbon metabolism enzymes and showed that inner membrane serine transporters, Sideroflexins (SFXNs), are novel substrates of the TIM22 complex. Deletion of SFXN1 recapitulates the remodelling of one-carbon metabolism observed in Sengers patient cells. Proliferation of cells lacking AGK is perturbed in the absence of exogenous serine and rescuable through addition of formate, highlighting the dysregulation of one carbon metabolism as a key molecular feature in the biology of Sengers syndrome.


Science ◽  
2018 ◽  
Vol 362 (6416) ◽  
pp. eaat9528 ◽  
Author(s):  
Nora Kory ◽  
Gregory A. Wyant ◽  
Gyan Prakash ◽  
Jelmi uit de Bos ◽  
Francesca Bottanelli ◽  
...  

One-carbon metabolism generates the one-carbon units required to synthesize many critical metabolites, including nucleotides. The pathway has cytosolic and mitochondrial branches, and a key step is the entry, through an unknown mechanism, of serine into mitochondria, where it is converted into glycine and formate. In a CRISPR-based genetic screen in human cells for genes of the mitochondrial pathway, we found sideroflexin 1 (SFXN1), a multipass inner mitochondrial membrane protein of unclear function. Like cells missing mitochondrial components of one-carbon metabolism, those null for SFXN1 are defective in glycine and purine synthesis. Cells lacking SFXN1 and one of its four homologs, SFXN3, have more severe defects, including being auxotrophic for glycine. Purified SFXN1 transports serine in vitro. Thus, SFXN1 functions as a mitochondrial serine transporter in one-carbon metabolism.


1998 ◽  
Vol 1414 (1-2) ◽  
pp. 260-264 ◽  
Author(s):  
Christelle Spannagel ◽  
Jacques Vaillier ◽  
Geneviéve Arselin ◽  
Pierre-Vincent Graves ◽  
Xavier Grandier-Vazeille ◽  
...  

Author(s):  
Michelle Grace Acoba ◽  
Ebru S. Selen Alpergin ◽  
Santosh Renuse ◽  
Lucía Fernández-del-Río ◽  
Ya-Wen Lu ◽  
...  

SUMMARYMitochondrial carriers (MC) mediate the passage of small molecules across the inner mitochondrial membrane (IMM) enabling regulated crosstalk between compartmentalized reactions. Despite MCs representing the largest family of solute carriers in mammals, most have not been subjected to a comprehensive investigation, limiting our understanding of their metabolic contributions. Here, we functionally characterized SFXN1, a member of the non-canonical, sideroflexin MC family. We find that SFXN1, an integral membrane protein in the IMM with an uneven number of transmembrane domains, is a novel TIM22 substrate. SFXN1 deficiency specifically impairs Complex III (CIII) biogenesis, activity, and assembly, compromising coenzyme Q levels. This CIII dysfunction is independent of one-carbon metabolism, the known primary role for SFXN1 as a mitochondrial serine transporter. Instead, SFXN1 supports CIII function by participating in heme and central carbon metabolism. Our findings highlight the multiple ways that SFXN1-based amino acid transport impacts mitochondrial and cellular metabolic efficiency.


2010 ◽  
Vol 80 (45) ◽  
pp. 319-329 ◽  
Author(s):  
Allyson A. West ◽  
Marie A. Caudill

Folate and choline are water-soluble micronutrients that serve as methyl donors in the conversion of homocysteine to methionine. Inadequacy of these nutrients can disturb one-carbon metabolism as evidenced by alterations in circulating folate and/or plasma homocysteine. Among common genetic variants that reside in genes regulating folate absorptive and metabolic processes, homozygosity for the MTHFR 677C > T variant has consistently been shown to have robust effects on status markers. This paper will review the impact of genetic variants in folate-metabolizing genes on folate and choline bioefficacy. Nutrient-gene and gene-gene interactions will be considered along with the need to account for these genetic variants when updating dietary folate and choline recommendations.


2007 ◽  
Vol 34 (S 2) ◽  
Author(s):  
D Siemen ◽  
Y Cheng ◽  
X Gu ◽  
P Bednarczyk ◽  
GG Haddad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document