genetic screen
Recently Published Documents


TOTAL DOCUMENTS

776
(FIVE YEARS 158)

H-INDEX

66
(FIVE YEARS 10)

2022 ◽  
Vol 119 (3) ◽  
pp. e2106974119
Author(s):  
Shingo Hiroki ◽  
Yuichi Iino

The nematode Caenorhabditis elegans learns the concentration of NaCl and moves toward the previously experienced concentration. In this behavior, the history of NaCl concentration change is reflected in the level of diacylglycerol and the activity of protein kinase C, PKC-1, in the gustatory sensory neuron ASER and determines the direction of migration. Here, through a genetic screen, we found that the activation of Gq protein compensates for the behavioral defect of the loss-of-function mutant of pkc-1. We found that Gq activation results in hyperproduction of diacylglycerol in ASER sensory neuron, which leads to recruitment of TPA-1, an nPKC isotype closely related to PKC-1. Unlike the pkc-1 mutants, loss of tpa-1 did not obviously affect migration directions in the conventional learning assay. This difference was suggested to be due to cooperative functions of the C1 and C2-like domains of the nPKC isotypes. Furthermore, we investigated how the compensatory capability of tpa-1 contributes to learning and found that learning was less robust in the context of cognitive decline or environmental perturbation in tpa-1 mutants. These results highlight how two nPKC isotypes contribute to the learning system.


2022 ◽  
Author(s):  
Bhagaban Mallik ◽  
C. Andrew Frank

To identify conserved components of synapse function that are also associated with human diseases, we conducted a genetic screen. We used the Drosophila melanogaster neuromuscular junction (NMJ) as a model. We employed RNA interference (RNAi) on selected targets and assayed synapse function by electrophysiology. We focused our screen on genetic factors known to be conserved from human neurological or muscle functions (321 total RNAi lines screened). Knockdown of a particular Mitochondrial Complex I (MCI) subunit gene (ND-20L) lowered levels of NMJ neurotransmission. Due to the severity of the phenotype, we studied MCI function further. Knockdown of core MCI subunits concurrently in neurons and muscle led to impaired neurotransmission. Further, pharmacology targeting MCI phenocopied the impaired neurotransmission phenotype. Finally, MCI subunit knockdowns led to profound cytological defects, including reduced NMJ growth and altered NMJ morphology. Mitochondria are essential for cellular bioenergetics and produce ATP through oxidative phosphorylation. Five multi-protein complexes achieve this task, and MCI is the largest. Impaired Mitochondrial Complex I subunits in humans are associated with disorders such as Parkinsons disease, Leigh syndrome, and cardiomyopathy. Together, our data present an analysis of Complex I in the context of synapse function and plasticity. We speculate that in the context of human MCI dysfunction, similar neuronal and synaptic defects could contribute to pathogenesis.


Author(s):  
Sarah Robinson-Thiewes ◽  
Aaron M Kershner ◽  
Heaji Shin ◽  
Kimberly A Haupt ◽  
Peggy Kroll-Connor ◽  
...  

Abstract GLP-1/Notch signaling and a downstream RNA regulatory network maintain germline stem cells (GSCs) in Caenorhabditis elegans. In mutants lacking the GLP-1 receptor, all GSCs enter the meiotic cell cycle precociously and differentiate into sperm. This dramatic GSC defect is called the “Glp” phenotype. The lst-1 and sygl-1 genes are direct targets of Notch transcriptional activation and functionally redundant. Whereas single lst-1 and sygl-1 mutants are fertile, lst-1 sygl-1 double mutants are sterile with a Glp phenotype. We set out to identify genes that function redundantly with either lst-1 or sygl-1 to maintain GSCs. To this end, we conducted forward genetic screens for mutants with a Glp phenotype in genetic backgrounds lacking functional copies of either lst-1 or sygl-1. The screens generated nine glp-1 alleles, two lst-1 alleles, and one allele of pole-1, which encodes the catalytic subunit of DNA polymerase ε. Three glp-1 alleles reside in Ankyrin (ANK) repeats not previously mutated. pole-1 single mutants have a low penetrance Glp phenotype that is enhanced by loss of sygl-1. Thus, the screen uncovered one locus that interacts genetically with sygl-1 and generated useful mutations for further studies of GSC regulation.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3535
Author(s):  
Irene M. Häfliger ◽  
Franz R. Seefried ◽  
Cord Drögemüller

We herein report the result of a large-scale reverse genetic screen in the Swiss Simmental population, a local dual-purpose cattle breed. We aimed to detect possible recessively inherited variants affecting protein-coding genes, as such deleterious variants can impair fertility and rearing success significantly. We used 115,000 phased SNP data of almost 10 thousand cattle with pedigree data. This revealed evidence for 11 genomic regions of 1.17 Mb on average, with haplotypes (SH1 to SH11) showing a significant depletion in homozygosity and an allele frequency between 3.2 and 10.6%. For the proposed haplotypes, it was unfortunately not possible to evaluate associations with fertility traits as no corresponding data were available. For each haplotype region, possible candidate genes were listed based on their known function in development and disease. Subsequent mining of single-nucleotide variants and short indels in the genomes of 23 sequenced haplotype carriers allowed us to identify three perfectly linked candidate causative protein-changing variants: a SH5-related DIS3:p.Ile678fs loss-of-function variant, a SH8-related CYP2B6:p.Ile313Asn missense variant, and a SH9-related NUBPL:p.Ser143Tyr missense variant. None of these variants occurred in homozygous state in any of more than 5200 sequenced cattle of various breeds. Selection against these alleles in order to reduce reproductive failure and animal loss is recommended.


mBio ◽  
2021 ◽  
Author(s):  
Michael Röling ◽  
Mahsa Mollapour Sisakht ◽  
Enrico Ne ◽  
Panagiotis Moulos ◽  
Raquel Crespo ◽  
...  

A reservoir of latently HIV-1-infected cells persists in the presence of combination antiretroviral therapy (cART), representing a major obstacle for viral eradication. Reactivation of the latent HIV-1 provirus is part of curative strategies which aim to promote clearance of the infected cells.


2021 ◽  
Author(s):  
Weijia Cai ◽  
Mai Nguyen ◽  
nicole wilski ◽  
timothy purwin ◽  
Manoela TiagodosSantos ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (23) ◽  
pp. 12777
Author(s):  
Takuya Tsujino ◽  
Kazumasa Komura ◽  
Teruo Inamoto ◽  
Haruhito Azuma

Prostate cancer (PCa) is one of the common malignancies in male adults. Recent advances in omics technology, especially in next-generation sequencing, have increased the opportunity to identify genes that correlate with cancer diseases, including PCa. In addition, a genetic screen based on CRISPR/Cas9 technology has elucidated the mechanisms of cancer progression and drug resistance, which in turn has enabled the discovery of new targets as potential genes for new therapeutic targets. In the era of precision medicine, such knowledge is crucial for clinicians in their decision-making regarding patient treatment. In this review, we focus on how CRISPR screen for PCa performed to date has contributed to the identification of biologically critical and clinically relevant target genes.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2031-2031
Author(s):  
Scott A. Peslak ◽  
Eugene Khandros ◽  
Peng Huang ◽  
Maryanne Kihiu ◽  
Osheiza Abdulmalik ◽  
...  

Abstract Sickle cell disease (SCD) afflicts millions of people worldwide and can lead to severe complications including acute chest syndrome, stroke, avascular necrosis of bone, and nephropathy. Although increasing levels of fetal hemoglobin (HbF) significantly reduces cell sickling and SCD-related morbidity and mortality, effective HbF pharmacologic induction has remained an elusive goal. To identify additional potentially druggable molecules involved in HbF control, we carried out a domain-focused CRISPR-Cas9-based genetic screen targeting all protein phosphatases (1308 independent sgRNA representing 218 phosphatases). The phosphatase sgRNA library was cloned into a lentivirus scaffold and introduced into the erythroid cell line HUDEP2 stably expressing Cas9, and the top and bottom 10% of HbF-expressing cells were sorted and the integrated sgRNAs were sequenced. This screen identified a single protein phosphatase - PPP6C - as an HbF repressor. PPP6C is the catalytic subunit of protein phosphatase 6, a serine/threonine cytosolic protein phosphatase that is widely expressed across tissues and throughout erythroid development to broadly regulate mRNA translation. PPP6C has been implicated in numerous cellular functions, including cell cycle regulation, autophagy, and innate immunity, but its role in HbF regulation has not previously been described. Depletion of PPP6C by 5 independent sgRNAs in HUDEP2 cells resulted in significant HbF enrichment. Importantly, PPP6C depletion did not affect cellular viability or differentiation, suggesting that PPP6C may serve as a targetable HbF regulator for the treatment of SCD. To validate the findings of this genetic screen in primary human erythroid cells, we performed CRISPR-Cas9 ribonuclear protein (RNP)-based genome editing of PPP6C in a three-phase in vitro culture of adult CD34+ hematopoietic cells. HbF levels were assessed by RT-qPCR, Western blot, flow cytometry, and HPLC. We find that depletion of PPP6C protein levels by greater than 80% increases gamma-globin transcript levels in a dose-dependent manner to nearly 5 times basal levels. In addition, PPP6C loss leads to a greater than doubling in F-cell number and a 3-4-fold increase in HbF levels as measured by HPLC analysis. PPP6C depletion showed minimal effects on the erythroid transcriptome by RNA-Seq and did not significantly impair erythroid maturation. Mechanistically, loss of PPP6C leads to depletion of BCL11A protein levels by nearly 50% but unchanged levels of other key HbF regulators such as HRI and LRF, suggesting PPP6C-mediated HbF regulation may proceed at least in part via loss of BCL11A. However, additional studies are necessary to fully elucidate these underlying regulatory mechanisms. Importantly, depletion of PPP6C in SCD patient-derived cells was well tolerated, led to similar levels of HbF induction, and markedly reduced cell sickling by greater than 60%. Results from ongoing studies exploring the mechanism of PPP6C in HbF regulation will be discussed. Taken together, these data indicate that PPP6C functions in a dose-dependent manner to regulate HbF in primary erythroid cells and may serve as a therapeutic target in the treatment of SCD. Disclosures Blobel: Fulcrum Therapeutics, Inc.: Consultancy; Pfizer: Consultancy.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4879
Author(s):  
Julia Simões Corrêa Simões Corrêa Galendi ◽  
Vera Vennedey ◽  
Hannah Kentenich ◽  
Stephanie Stock ◽  
Dirk Müller

Genetic screen-and-treat strategies for the risk-reduction of breast cancer (BC) and ovarian cancer (OC) are often evaluated by cost–utility analyses (CUAs). This analysis compares data on health preferences (i.e., utility values) in CUAs of targeted genetic testing for BC and OC. Based on utilities applied in fourteen CUAs, data on utility including related assumptions were extracted for the health states: (i) genetic test, (ii) risk-reducing surgeries, (iii) BC/OC and (iv) post cancer. In addition, information about the sources of utility and the impact on the cost-effectiveness was extracted. Utility for CUAs relied on heterogeneous data and assumptions for all health states. The utility values ranged from 0.68 to 0.97 for risk-reducing surgeries, 0.6 to 0.85 for BC and 0.5 to 0.82 for OC. In two out of nine studies, considering the impact of the test result strongly affected the cost–effectiveness ratio. While in general utilities seem not to affect the cost–utility ratio, in future modeling studies the impact of a positive/negative test on utility should be considered mandatory. Women’s health preferences, which may have changed as a result of improved oncologic care and genetic counselling, should be re-evaluated.


Author(s):  
Richard A Kleinschmidt ◽  
Laurie M Lyon ◽  
Samantha L Smith ◽  
Jonah Rittenberry ◽  
K Maeve Lawless ◽  
...  

Abstract Several studies have identified the paradoxical phenotype of increased heterochromatic gene silencing at specific loci that results from deletion or mutation of the histone deacetylase (HDAC) gene RPD3. To further understand this phenomenon, we conducted a genetic screen for suppressors of this extended silencing phenotype at the HMR locus in Saccharomyces cerevisiae. Most of the mutations that suppressed extended HMR-silencing in rpd3 mutants without completely abolishing silencing were identified in the histone H3 lysine 4 methylation (H3K4me) pathway, specifically in SET1, BRE1 and BRE2. These second site mutations retained normal HMR silencing, therefore appear to be specific for the rpd3Δ extended silencing phenotype. As an initial assessment of the role of H3K4 methylation in extended silencing, we rule out some of the known mechanisms of Set1p/H3K4me mediated gene repression by HST1, HOS2 and HST3 encoded HDACs. Interestingly, we demonstrate that the RNA Polymerase III complex remains bound and active at the HMR-tDNA in rpd3 mutants despite silencing extending beyond the normal barrier. We discuss these results as they relate to the interplay among different chromatin modifying enzyme functions and the importance of further study of this enigmatic phenomenon.


Sign in / Sign up

Export Citation Format

Share Document