Hamiltonian formulation of general relativity

Author(s):  
Claus Kiefer
Author(s):  
Steven Carlip

This work is a short textbook on general relativity and gravitation, aimed at readers with a broad range of interests in physics, from cosmology to gravitational radiation to high energy physics to condensed matter theory. It is an introductory text, but it has also been written as a jumping-off point for readers who plan to study more specialized topics. As a textbook, it is designed to be usable in a one-quarter course (about 25 hours of instruction), and should be suitable for both graduate students and advanced undergraduates. The pedagogical approach is “physics first”: readers move very quickly to the calculation of observational predictions, and only return to the mathematical foundations after the physics is established. The book is mathematically correct—even nonspecialists need to know some differential geometry to be able to read papers—but informal. In addition to the “standard” topics covered by most introductory textbooks, it contains short introductions to more advanced topics: for instance, why field equations are second order, how to treat gravitational energy, what is required for a Hamiltonian formulation of general relativity. A concluding chapter discusses directions for further study, from mathematical relativity to experimental tests to quantum gravity.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Stuart Marongwe

A Hamiltonian formulation of General Relativity within the context of the Nexus Paradigm of quantum gravity is presented. We show that the Ricci flow in a compact matter free manifold serves as the Hamiltonian density of the vacuum as well as a time evolution operator for the vacuum energy density. The metric tensor of GR is expressed in terms of the Bloch energy eigenstate functions of the quantum vacuum allowing an interpretation of GR in terms of the fundamental concepts of quantum mechanics.


2006 ◽  
Vol 03 (08) ◽  
pp. 1493-1500 ◽  
Author(s):  
STEFANO VIGNOLO ◽  
ROBERTO CIANCI ◽  
DANILO BRUNO

The formulation of General Relativity presented in [1] and the Hamiltonian formulation of Gauge theories described in [2] are made to interact. The resulting scheme allows to see General Relativity as a constrained Gauge theory.


1994 ◽  
Vol 03 (02) ◽  
pp. 379-392 ◽  
Author(s):  
J. FERNANDO BARBERO G.

We show in this paper that it is possible to formulate general relativity in a phase space coordinatized by two SO(3) connections. We analyze first the Husain-Kuchař model and find a two connection description for it. Introducing a suitable scalar constraint in this phase space we get a Hamiltonian formulation of gravity that is close to the one given by Ashtekar, from which it is derived, but has some interesting features of its own. Among them are a possible mechanism for dealing with the degenerate metrics and a neat way of writing the constraints of general relativity.


Sign in / Sign up

Export Citation Format

Share Document