hamiltonian density
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1004
Author(s):  
Dmitry S. Kaparulin ◽  
Simon L. Lyakhovich ◽  
Oleg D. Nosyrev

We consider a gauge theory of vector fields in 3D Minkowski space. At the free level, the dynamical variables are subjected to the extended Chern–Simons (ECS) equations with higher derivatives. If the color index takes n values, the third-order model admits a 2n-parameter series of second-rank conserved tensors, which includes the canonical energy–momentum. Even though the canonical energy is unbounded, the other representatives in the series have a bounded from below the 00-component. The theory admits consistent self-interactions with the Yang–Mills gauge symmetry. The Lagrangian couplings preserve the energy–momentum tensor that is unbounded from below, and they do not lead to a stable non-linear theory. The non-Lagrangian couplings are consistent with the existence of a conserved tensor with a 00-component bounded from below. These models are stable at the non-linear level. The dynamics of interacting theory admit a constraint Hamiltonian form. The Hamiltonian density is given by the 00-component of the conserved tensor. In the case of stable interactions, the Poisson bracket and Hamiltonian do not follow from the canonical Ostrogradski construction. Particular attention is paid to the “triply massless” ECS theory, which demonstrates instability even at the free level. It is shown that the introduction of extra scalar field, serving as Higgs, can stabilize the dynamics in the vicinity of the local minimum of energy. The equations of motion of the stable model are non-Lagrangian, but they admit the Hamiltonian form of dynamics with a Hamiltonian that is bounded from below.


Author(s):  
Ben Gormley ◽  
Eugene V. Ferapontov ◽  
Vladimir S. Novikov

We classify integrable Hamiltonian equations of the form u t = ∂ x ( δ H δ u ) , H = ∫ h ( u , w )   d x d y , where the Hamiltonian density h ( u , w ) is a function of two variables: dependent variable u and the non-locality w = ∂ x − 1 ∂ y u . Based on the method of hydrodynamic reductions, the integrability conditions are derived (in the form of an involutive PDE system for the Hamiltonian density h ). We show that the generic integrable density is expressed in terms of the Weierstrass σ -function: h ( u , w ) =  σ ( u ) e w . Dispersionless Lax pairs, commuting flows and dispersive deformations of the resulting equations are also discussed.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Nikhil Anand ◽  
Zuhair U. Khandker ◽  
Matthew T. Walters

Abstract We consider Lorentzian CFT Wightman functions in momentum space. In particular, we derive a set of reference formulas for computing two- and three-point functions, restricting our attention to three-point functions where the middle operator (corresponding to a Hamiltonian density) carries zero spatial momentum, but otherwise allowing operators to have arbitrary spin. A direct application of our formulas is the computation of Hamiltonian matrix elements within the framework of conformal truncation, a recently proposed method for numerically studying strongly-coupled QFTs in real time and infinite volume. Our momentum space formulas take the form of finite sums over 2F1 hypergeometric functions, allowing for efficient numerical evaluation. As a concrete application, we work out matrix elements for 3d ϕ4-theory, thus providing the seed ingredients for future truncation studies.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 863
Author(s):  
Pi-Gang Luan

In this work, we study the dynamical behaviors of the electromagnetic fields and material responses in the hyperbolic metamaterial consisting of periodically arranged metallic and dielectric layers. The thickness of each unit cell is assumed to be much smaller than the wavelength of the electromagnetic waves, so the effective medium concept can be applied. When electromagnetic (EM) fields are present, the responses of the medium in the directions parallel to and perpendicular to the layers are similar to those of Drude and Lorentz media, respectively. We derive the time-dependent energy density of the EM fields and the power loss in the effective medium based on Poynting theorem and the dynamical equations of the polarization field. The time-averaged energy density for harmonic fields was obtained by averaging the energy density in one period, and it reduces to the standard result for the lossless dispersive medium when we turn off the loss. A numerical example is given to reveal the general characteristics of the direction-dependent energy storage capacity of the medium. We also show that the Lagrangian density of the system can be constructed. The Euler–Lagrange equations yield the correct dynamical equations of the electromagnetic fields and the polarization field in the medium. The canonical momentum conjugates to every dynamical field can be derived from the Lagrangian density via differentiation or variation with respect to that field. We apply Legendre transformation to this system and find that the resultant Hamiltonian density is identical to the energy density up to an irrelevant divergence term. This coincidence implies the correctness of the energy density formula we obtained before. We also give a brief discussion about the Hamiltonian dynamics description of the system. The Lagrangian description and Hamiltonian formulation presented in this paper can be further developed for studying the elementary excitations or quasiparticles in other hyperbolic metamaterials.


2020 ◽  
Vol 2 (3) ◽  
pp. 414-441
Author(s):  
Theodoros Pailas

A “time”-covariant Schrödinger equation is defined for the minisuperspace model of the Reissner–Nordström (RN) black hole, as a “hybrid” between the “intrinsic time” Schrödinger and Wheeler–DeWitt (WDW) equations. To do so, a reduced, regular, and “time(r)”-dependent Hamiltonian density was constructed, without “breaking” the re-parametrization covariance r→f(r˜). As a result, the evolution of states with respect to the parameter r and the probabilistic interpretation of the resulting quantum description is possible, while quantum schemes for different gauge choices are equivalent by construction. The solutions are found for Dirac’s delta and Gaussian initial states. A geometrical interpretation of the wavefunctions is presented via Bohm analysis. Alongside this, a criterion is presented to adjudicate which, between two singular spacetimes, is “more” or “less” singular. Two ways to adjudicate the existence of singularities are compared (vanishing of the probability density at the classical singularity and semi-classical spacetime singularity). Finally, an equivalence of the reduced equations with those of a 3D electromagnetic pp-wave spacetime is revealed.


Author(s):  
E. Comay

The successful results of the relativistic form of a quantum field theory that is derived from aLagrangian density justify its general usage. The significance of the Euler-Lagrange equations of a quantum particle is analysed. Many advantages of this approach, like abiding by the conservation laws of energy, momentum, angular momentum, and charge are well known. The merits of this approach also include other properties that are still not well known. For example, it is shown that a quantum function of the form ψ(t, r) describes a pointlike particle. Furthermore, the Lagrangian density and the Hamiltonian density take a different relativistic form – the Lagrangian density is a Lorentz scalar, whereas the Hamiltonian density is the T00 component of the energy-momentum tensor. It is proved that inconsistencies in the electroweak theory stem from negligence of the latter point.


Author(s):  
Eliahu Comay

Relativistic properties of a Dirac Lagrangian density are compared with those of a Dirac Hamiltonian density. Differences stem from the fact that a Lagrangian density is a Lorentz scalar, whereas a Hamiltonian density is a 00-component of a second rank tensor, called the energy-momentum tensor. This distinction affects the form of an interaction term of a Dirac particle. In particular, a tensor interaction term of a Dirac Lagrangian density transforms to a difference between a vector and an axial vector of the corresponding Hamiltonian density. This outcome shows that fundamental principles can prove the V-A attribute of weak interactions. A further analysis supports these results. Inherent problems of the electroweak theory are discussed.


2018 ◽  
Vol 861 ◽  
pp. 608-642 ◽  
Author(s):  
Alberto Scotti ◽  
Pierre-Yves Passaggia

The concept of available energy in a stratified fluid is revisited from the point of view of non-canonical Hamiltonian systems. We show that the concept of available energy arises when we minimize the energy subject to the constraints associated with the existence of Lagrangian invariants. The non-canonical structure implies that there exists a class of dynamically equivalent Hamiltonians, related by a local (in phase space) gauge symmetry. A local diagnostic energy can be defined via the Hamiltonian density chosen imposing a specific gauge-fixing condition on the class of dynamically similar Hamiltonians. The gauge-fixing condition that we introduce selects a specific local diagnostic energy which is well suited to study the effect of diabatic processes on the evolution of the available energy. Non-inertial effects, which are notoriously elusive to capture within an energetic framework, are naturally included via conservation of potential vorticity. We apply the framework to stratified flows in inertial and non-inertial frames. For stratified Boussinesq flows, when the initial distribution of potential vorticity is even around the origin, our framework recovers the available potential energy introduced by Holliday & McIntyre (J. Fluid Mech., vol. 107, 1981, pp. 221–225), and as such, depends only on the mass distribution of the flow. In rotating flows, the isopycnals of the ground state are generally not flat, and the ground state may have kinetic energy. We finally demonstrate that flows in non-inertial frames characterized by a low Rossby number ($Ro$), the local diagnostic energy has, to lowest order in $Ro$, a universal character.


Sign in / Sign up

Export Citation Format

Share Document