scholarly journals Efficacy of Soil and Foliar Applied Registered and Experimental Materials on Green Peach Aphid and Tobacco Flea Beetle

2020 ◽  
Vol 45 (1) ◽  
Author(s):  
Gabriel Zilnik ◽  
Hannah Burrack
1996 ◽  
Vol 21 (1) ◽  
pp. 138-138
Author(s):  
Whitney Cranshaw ◽  
D. Casey Sclar ◽  
Aaron Spriggs ◽  
Jason Bishop

Abstract Plots were established at the Department of Horticulture Field Research Center; north of Ft. Collins, CO. Planting was done 12 May, establishing a series of 2-row plots, 30-ft in length. Plot design was a RCB with 4 replications. Admire applications were made to the soil along the sides of the hills and incorporated to a depth of 1-2 inches with a hand cultivator on 5 June, shortly after plant emergence. Soil applications of Granusol Magnesium were applied and incorporated into the hill on 24 June and 24 July. All foliar treatments were applied 27 June and 14 July (immediately after plot evaluations) using a CO2 compressed air sprayer with a single flat fan nozzle delivering 20 gal gal/acre at 45 psi in a series of passes that covered the top and both sides of each row. At the time of original treatment Colorado potato beetle mating and egg laying was common, with some recently hatched larvae present. Evaluations of Colorado potato beetle (CPB) larvae were made 30 June and 13 July by counting all larvae on the center 20-ft of each row. Populations dropped sharply after this point, preventing subsequent sampling. Potato flea beetle samples were taken on 4 dates, making 6 sweeps row (12 sweeps/plot) on the first two samples and 8 sweeps/plot on the subsequent samples. Green peach aphid and potato/tomato psyllid were enumerated by counting insects on 35 leaves per plot.


2007 ◽  
Vol 32 (1) ◽  
Author(s):  
Casey W. Hoy ◽  
Michael J. Dunlap

Author(s):  
K. Betteridge ◽  
D. Costall

In spite of ragwort flea beetle (RFB) being present on a Dannevirke dairy farm, pastures were sprayed each winter to reduce ragwort density and limit the risk of ragwort poisoning of stock. The trial on this farm from June 1999 - October 2001, aimed to determine whether herbicide (H) impacted on RFB and how H and RFB each impacted on ragwort growth and persistence. RFBfree areas were created by spraying with insecticide (I). Effects of ragwort on animal health are also reported. High ester 2,4-D (H) boom-sprayed once only, in June 1999, killed most ragwort plants and reduced RFB larvae densities to low levels before the plants died. Once new ragwort established in treatment H, the plants became infested with RFB larvae. RFB larvae were suppressed by I resulting in ragwort density declining more slowly than in treatments where RFB were not suppressed. Insecticide treatments were stopped after 15 months and, at 24 months, ragwort could not be found within the trial area. Ragwort control was attributed to the cessation of herbicide spraying allowing the RFB population to reach a sufficient density to kill both small and large ragwort plants. Sub-clinical ragwort poisoning was found in livers of culled cows that had grazed on ragwort-dense pastures. Keywords: animal health, biological control, Longitarsus jacobaeae, pyrrolizidine alkaloids, ragwort, ragwort flea beetle, Senecio jacobaea


Author(s):  
R.A. Bagrov ◽  
◽  
V.I. Leunov

The mechanisms of transmission of potato viruses from plants to aphid vectors and from aphids to uninfected plants are described, including the example of the green peach aphid (Myzus persicae, GPA). Factors affecting the spreading of tuber necrosis and its manifestation on plants infected with potato leafroll virus (PLRV) are discussed. Recommendations for PLRV and GPA control in the field are given.


Sign in / Sign up

Export Citation Format

Share Document