The Rate of Deposition of Aerosol Particles from Turbulent Flow through Ducts

A previous paper gave an account of a method of calculating the velocity of deposition of aerosol particles upon the wall of a pipe through which they were passing in fully developed turbulent flow. This is now extended to include small particles which diffuse at an appreciable rate owing to their Brownian motion.


2011 ◽  
Vol 18 (6) ◽  
pp. 491-502 ◽  
Author(s):  
Andrew Mintu Sarkar ◽  
M. A. Rashid Sarkar ◽  
Mohammad Abdul Majid

2005 ◽  
Vol 12 (4) ◽  
pp. 385-394 ◽  
Author(s):  
M. A. Rashid Sarkar ◽  
M. Zaidul Islam ◽  
M. A. Islam

2017 ◽  
Author(s):  
Branislav Basara ◽  
Sinisa Krajnovic ◽  
Guglielmo Minelli

Author(s):  
Iskander S. Akhatov ◽  
Justin M. Hoey ◽  
Drew Thompson ◽  
Artur Lutfurakhmanov ◽  
Zakaria Mahmud ◽  
...  

A combined theoretical/experimental study of micron size aerosol flows through micro-capillaries of diameter about 100 μm and length about 1 cm is presented. It is shown that under proper conditions at a relatively high velocity of about 100 m/s such an aerosol flow reveals a new manifestation of microfluidics: the Saffman force acting on aerosol particles in gas flowing through a micro-capillary becomes significant thereby causing noticeable migration of particles toward the center line of the capillary. This finding opens up new opportunities for aerosol focusing, which is in stark contrast to the classical aerodynamic focusing methodologies where only particle inertia and the Stokes force of gas-particle interaction are typically used to control particle trajectories. A mathematical model for aerosol flow through a micro-capillary accounting for complicated interactions between particles and carrier gas is presented. This model describes the experimental observables obtained via shadowgraphy for aerosol beams exiting micro-capillaries. It is further shown that it is possible to design a micro-capillary system capable of generating a Collimated Aerosol Beam (CAB) in which aerosol particles stay very close to a capillary center line. The performance of such a CAB system for direct-write fabrication on a substrate is demonstrated. The lines deposited by CAB for direct-write fabrication are shown to exhibit widths of less than 5 μm — superior to ink-jet. Materials deposition based upon directed aerosol flow has the potential of finding application in the fields of flexible electronics, sensors, and solar cells. In this paper, the genesis of a new materials deposition method termed Collimated Aerosol Beam Direct-Write (CAB-DW) is discussed.


Sign in / Sign up

Export Citation Format

Share Document