aerosol flow
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 21)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 156 ◽  
pp. 105782
Author(s):  
Georg Möller ◽  
Malte Bieber ◽  
Stefanie Gürzing ◽  
Anja Lena Thiebes ◽  
Sarah Klein ◽  
...  

2021 ◽  
Vol 14 (6) ◽  
pp. 4507-4516
Author(s):  
Stavros Amanatidis​​​​​​​ ◽  
Yuanlong Huang ◽  
Buddhi Pushpawela ◽  
Benjamin C. Schulze ◽  
Christopher M. Kenseth ◽  
...  

Abstract. Ambient aerosol size distributions obtained with a compact scanning mobility analyzer, the “Spider” differential mobility analyzer (DMA), are compared to those obtained with a conventional mobility analyzer, with specific attention to the effect of mobility resolution on the measured size distribution parameters. The Spider is a 12 cm diameter radial differential mobility analyzer that spans the 10–500 nm size range with 30 s mobility scans. It achieves its compact size by operating at a nominal mobility resolution R=3 (sheath flow = 0.9 L min−1; aerosol flow = 0.3 L min−1) in place of the higher ratio of sheath flow to aerosol flow commonly used. The question addressed here is whether the lower resolution is sufficient to capture key characteristics of ambient aerosol size distributions. The Spider, operated at R=3 with 30 s up- and downscans, was co-located with a TSI 3081 long-column mobility analyzer, operated at R=10 with a 360 s sampling duty cycle. Ambient aerosol data were collected over 26 consecutive days of continuous operation, in Pasadena, CA. Over the 17–500 nm size range, the two instruments exhibit excellent correlation in the total particle number concentrations and geometric mean diameters, with regression slopes of 1.13 and 1.00, respectively. Our results suggest that particle sizing at a lower resolution than typically employed may be sufficient to obtain key properties of ambient size distributions, at least for these two moments of the size distribution. Moreover, it enables better counting statistics, as the wider transfer function for a given aerosol flow rate results in a higher counting rate.


2021 ◽  
Author(s):  
Sebastian Blochum ◽  
Fabian H. Ruch ◽  
Thomas Bastuck ◽  
Martin Härtl ◽  
Richard Mittler ◽  
...  

2021 ◽  
Author(s):  
Stavros Amanatidis ◽  
Yuanlong Huang ◽  
Buddhi Pushpawela ◽  
Benjamin C. Schulze ◽  
Christopher M. Kenseth ◽  
...  

Abstract. Ambient aerosol size distributions obtained with a compact, scanning mobility analyzer, the Spider DMA, are compared to those obtained with a conventional mobility analyzer, with specific attention to the effect of mobility resolution on the measured size distribution parameters. The Spider is a 12-cm diameter radial differential mobility analyzer that spans the 10–500 nm size range with 30s mobility scans. It achieves its compact size by operating at a nominal mobility resolution R = 3 (sheath flow = 0.9 L/min, aerosol flow = 0.3 L/min), in place of the higher sheath-to-aerosol flow commonly used. The question addressed here is whether the lower resolution is sufficient to capture the dynamics and key characteristics of ambient aerosol size distributions. The Spider, operated at R = 3 with 30s up and down scans, was collocated with a TSI 3081 long-column mobility analyzer, operated at R = 10 with a 360s sampling duty cycle. Ambient aerosol data were collected over 26 consecutive days of continuous operation, in Pasadena, CA. Over the 20–500 nm size range, the two instruments exhibit excellent correlation in the total particle number concentrations and geometric mean diameters, with regression slopes of 1.13 and 1.00, respectively. Our results suggest that particle sizing at a lower resolution than typically employed is sufficient in obtaining the key properties of ambient size distributions.


2021 ◽  
Author(s):  
Ting Lei ◽  
Nan Ma ◽  
Juan Hong ◽  
Thomas Tuch ◽  
Xin Wang ◽  
...  

<p>Interactions between water and nanoparticles are of great significance for atmospheric multiphase processes, physical chemistry, and materials science. Current knowledge of the hygroscopic and related physicochemical properties of nanoparticles, however, is insufficient due to limitations of the available measurement techniques. Here, we present the design and performance of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus. To enable high accuracy and precision in hygroscopicity measurements of sub-10 nm aerosol nanoparticles, systematic and comprehensive calibration criteria of nano-HTDMA have been developed and applied, including sheath/aerosol flow rates, DMA voltage, relative humidity (RH) sensor, temperature sensor, and particle sizing. After calibration, the nano-HTDMA system has been shown to have an accurate sizing and a small sizing offsets between the two DMAs (<1.4%) for aerosol nanoparticles with diameters down to 6 nm. Moreover, to maintain the RH-uniformities that prevent the pre-deliquescence and non-prompt phase transition of nanoparticles within DMA2, the RH of sheath flow is kept as same as that of aerosol flow at inlet of DMA2, and the humidification system and the DMA2 system are placed in a well-insulated and air conditioner housing (±0.1K). Using nano-HTDMA system. We investigate the hygroscopic behavior of aerosol nanoparticles of two inorganic substances (e.g., ammonium sulfate and sodium sulfate). A strong size dependence of the hygroscopic growth factor is observed for ammonium sulfate and sodium sulfate nanoparticles with diameters down to 6 nm, respectively. For size dependence of phase transition, we find a weak size dependence of DRH and ERH of ammonium sulfate nanoparticles with diameters from 6 to 100 nm but a pronounced size dependence of DRH and ERH between 20 and  6 nm for sodium sulfate nanoparticles.</p>


2021 ◽  
Vol 152 ◽  
pp. 105718
Author(s):  
Julian Zoller ◽  
Amin Zargaran ◽  
Kamil Braschke ◽  
Jörg Meyer ◽  
Uwe Janoske ◽  
...  
Keyword(s):  

2021 ◽  
Vol 1 (3) ◽  
pp. 23-31
Author(s):  
E. I. Vedenin ◽  
S. V. Polovchenko ◽  
I. A. Sarychev ◽  
P. V. Chartiy
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document