scholarly journals Carbon assimilation through a vertical light gradient in the canopy of invasive herbs grown under different temperature regimes is determined by leaf and whole-plant architecture

AoB Plants ◽  
2020 ◽  
Vol 12 (4) ◽  
Author(s):  
Andreas Jorgensen ◽  
Brian K Sorrell ◽  
Franziska Eller

Abstract This study examined the acclimation to temperature of two globally invasive species Iris pseudacorus and Lythrum salicaria, which share the same habitat type but differ in morphology. Iris pseudacorus has long vertical leaves, allowing light penetration through the canopy, while L. salicaria has stems with small horizontal leaves, creating significant self-shading. We aimed to build a physiological understanding of how these two species respond to different growth temperatures with regard to growth and gas exchange-related traits over the canopy. Growth and gas exchange-related traits in response to low (15 °C) and high (25 °C) growth temperature regimes were compared. Plants were grown in growth chambers, and light response curves were measured with infrared gas analysers after 23–33 days at three leaf positions on each plant, following the vertical light gradient through the canopy. After 37 days of growth, above-ground biomass, photosynthetic pigments and leaf N concentration were determined. The maximum photosynthesis rate was lower in lower leaf positions but did not differ significantly between temperatures. Iris pseudacorus photosynthesis decreased with decreasing leaf position, more so than L. salicaria. This was explained by decreasing N and chlorophyll concentrations towards the leaf base in I. pseudacorus, while pigment concentrations increased towards the lower canopy in L. salicaria. Biomass, shoot height and specific leaf area increased with temperature, more so in I. pseudacorus than in L. salicaria. Light response curves revealed that L. salicaria had a higher degree of shade acclimation than I. pseudacorus, probably due to self-shading in L. salicaria. High temperature decreased C assimilation at the bottom of the canopy in L. salicaria, while C assimilation in I. pseudacorus was less affected by temperature. As vegetative growth and flowering was stimulated by temperature, the invasive potential of these species is predicted to increase under global warming.

2001 ◽  
Vol 31 (7) ◽  
pp. 1235-1243 ◽  
Author(s):  
S Palmroth ◽  
P Hari

We analyzed the combined effect of differences in the photosynthetic light response curve and in the distributions of photosynthetically active radiation (PAR) irradiance within the canopy on the CO2 exchange rates of Scots pine (Pinus sylvestris L.) shoots. Nitrogen concentration did not vary with depth within the canopy, but leaf mass per area (LMA) ranged from 58.2 to 95.2 g·m–2 (all needle age-classes pooled) and increased with increasing available PAR. The photosynthetic light response curves of 75 randomly sampled, 1-year-old shoots (with a fixed structure) were measured in the laboratory. No statistically significant differences in photosynthetic parameters or stomatal conductance either on an area or mass basis were detected between the top, middle, and bottom zones of the canopy. However, a significant decrease occurred in the area-based dark respiration rate (Rd) with increasing depth in the canopy. The area-based maximum CO2 exchange rate was weakly correlated with needle nitrogen content (Narea) and LMA, whereas Rd showed a higher correlation with both Narea and LMA. Estimates of the CO2 exchange rate over a day (24 h) in July suggest that the apparently small differences in mean light response curves of the canopy zones are reflected in the enhanced performance of shade needles in low light conditions because of reduced respiration costs. Based on our results, structural acclimation of needles along the light gradient, rather than changes in biochemical machinery, appears to be the more important acclimation process in Scots pine.


2018 ◽  
Vol 12 (04) ◽  
pp. 583-591 ◽  
Author(s):  
Thaísa Muriel Mioranza ◽  
◽  
Adriano Mitio Inagaki ◽  
Mônica Anghinoni Müller ◽  
José Renato Stangarlin ◽  
...  

1992 ◽  
Vol 117 (3) ◽  
pp. 467-472 ◽  
Author(s):  
Richard J. Campbell ◽  
Richard P. Marini ◽  
Jeffrey B. Birch

Light response curves for gas exchange characteristics were developed for spur leaves of `Stayman' and `Delicious' apple (Malus domestica Borkh.) from interior, intermediate, and exterior canopy positions throughout the season. At full bloom (FB), before full leaf expansion, exterior leaves had higher maximum rates of net photosynthesis (Pn), and a statistically different Pn light response curve than the interior leaves. Intermediate leaves had intermediate Pn rates and light response curves. Pn light response curves for all three `Delicious' canopy positions differed from each other from FB + 6 weeks until the end of the season. Interior leaves had maximum Pn rates of only 50% to 60% of those for the exterior leaves from FB + 10 weeks until the end of the season. Light saturation levels were higher for the exterior leaves than for interior or intermediate leaves. Exterior leaves had a tendency throughout the season for higher quantum efficiency of Pn at subsaturating light levels than interior or intermediate leaves. Stomatal conductance was higher for the exterior than the interior or intermediate leaves of `Delicious' on all dates. Water-use efficiency was equivalent among all leaves. Exterior leaves had higher specific leaf weight, dark respiration rates, and incident light levels on all dates than interior or intermediate leaves.


2019 ◽  
Author(s):  
Madhav P. Nepal ◽  
Virginia S. Berg

ABSTRACTPlants in stressful environments have evolved strategies to cope with fluctuating environmental conditions.Potentilla gracilis, also known as Alpine Cinquefoil, grows in alpine meadows of the Rocky Mountains (USA), and is subjected to wide ranges of temperature, light intensity and water availability on a time scale of minutes to days during the growing season. Leaves often freeze to a brittle state at night, are exposed to high radiation while still frosty, dehydrate to wilting during the following light period, and then repeat the cycle the following day. The main objective of this research was to determine the effect of night temperature on subsequent photosynthetic gas exchange inP. gracilis. We used a photosynthetic gas exchange system to compare assimilation and stomatal conductance from light response curves of cold-acclimatedP. gracilisfollowing warm and chilling nights, and for plants at different water potentials. From the light response curves, dark respiration, light compensation point, maximum assimilation, light saturation point, and inhibition of photosynthesis were determined and were compared among the same plants under varying conditions. Assimilation and stomatal conductance decreased with the fall in measurement temperature, following chilling nights, and with the severity of water stress. Low night temperature and high photon flux density during the daytime, which are very common during the growing season in the field, cause a reduction in photosynthesis of the plant. The probable underlying damage during inhibition is likely repairable indicating protection rather than damage. The cold nocturnal temperature, with its less efficient biochemical repair capabilities, may partly be responsible for the reduction in assimilation of the following day.P. gracilisspecies exhibited persistent acquired freezing tolerance; substantial photosynthetic productivity over a wide range of light intensity and temperature; and significant tolerance of, and rapid recovery from, severe drought; making a maximum use of often challenging resources.


Planta ◽  
1993 ◽  
Vol 189 (2) ◽  
Author(s):  
E. �gren ◽  
J.R. Evans

CORD ◽  
2002 ◽  
Vol 18 (02) ◽  
pp. 34
Author(s):  
Gomes, F.P. ◽  
Mielke, M.S. ◽  
Almeida, A. F. ◽  
Muniz, W. S.

Net photosynthetic (A) and leaf transpiration (E) rates and stomatal conductance to water vapour (gs) of Malayan Yellow Dwarf (MYD) and Brazilian Green Dwarf (BGD) coconut accessions (Cocos nucifera var. ‘nana’ L.) were studied and discussed in terms of the technical aspects related to light-response curves in field conditions. Measurements of gas exchange were performed during four days, in April and may 2000, at the Cocoa Research Center Experimental Station (Una - BA, Brazil). The A, gs and E parameters were significantly (P < 0.05) different between the two genotypes. The mean maximum values of A, gs and E were 10.4 and 12.0 µmol CO2 m-2 s-1, 0.21 and 0.35 mol H2O m-2 s-1 and 3.07 and 3.69 mmol m-2 s-1 for MYD and BGD, respectively. For both genotypes a good fitting of the light-response curve models were obtained, indicating that A and gs were dependent of the photosynthetically active radiation incident on leaf surface (Qi), in spite of high genotipic variation. Interesting results were achieved when an empirical multiplicative model was used. The model relating A or gs with Qi and with leaf-to-air water vapour pressure deficit inside the chamber (VPDL) was tested for both genotypes and showed a negative influence of the latter on the stomatal behavior and consequently on A. Such effect was more pronounced in BGD than in MYD. These and others relationships involving leaf gas exchange and microclimatic variables in coconut palm trees are discussed


Sign in / Sign up

Export Citation Format

Share Document