canopy position
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 42)

H-INDEX

24
(FIVE YEARS 3)

Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 3
Author(s):  
Aaron M. Sparks ◽  
Alistair M.S. Smith

Individual Tree Detection (ITD) algorithms that use Airborne Laser Scanning (ALS) data can provide accurate tree locations and measurements of tree-level attributes that are required for stand-to-landscape scale forest inventory and supply chain management. While numerous ITD algorithms exist, few have been assessed for accuracy in stands with complex forest structure and composition, limiting their utility for operational application. In this study, we conduct a preliminary assessment of the ability of the ForestView® algorithm created by Northwest Management Incorporated to detect individual trees, classify tree species, live/dead status, canopy position, and estimate height and diameter at breast height (DBH) in a mixed coniferous forest with an average tree density of 543 (s.d. ±387) trees/hectare. ITD accuracy was high in stands with lower canopy cover (recall: 0.67, precision: 0.8) and lower in stands with higher canopy cover (recall: 0.36, precision: 0.67), mainly owing to omission of suppressed trees that were not detected under the dominant tree canopy. Tree species that were well-represented within the study area had high classification accuracies (producer’s/user’s accuracies > ~60%). The similarity between the ALS estimated and observed tree attributes was high, with no statistical difference in the ALS estimated height and DBH distributions and the field observed height and DBH distributions. RMSEs for tree-level height and DBH were 0.69 m and 7.2 cm, respectively. Overall, this algorithm appears comparable to other ITD and measurement algorithms, but quantitative analyses using benchmark datasets in other forest types and cross-comparisons with other ITD algorithms are needed.


2021 ◽  
Vol 13 (24) ◽  
pp. 5057
Author(s):  
Fangyuan Yu ◽  
Tawanda W. Gara ◽  
Juyu Lian ◽  
Wanhui Ye ◽  
Jian Shen ◽  
...  

Little attention has been paid to the impact of vertical canopy position on the leaf spectral properties of tall trees, and few studies have explored the ability of leaf spectra to characterize the variation of leaf traits across different canopy positions. Using a tower crane, we collected leaf samples from three canopy layers (lower, middle, and upper) and measured eight leaf traits (equivalent water thickness, specific leaf area, leaf carbon content, leaf nitrogen content, leaf phosphorus content, leaf chlorophyll content, flavonoid, and nitrogen balance index) in a subtropical evergreen broadleaved forest. We evaluated the variability of leaf traits and leaf spectral properties, as well as the ability of leaf spectra to track the variation of leaf traits among three canopy layers for six species within the entire reflectance spectrum. The results showed that the eight leaf traits that were moderately or highly correlated with each other showed significant differences along the vertical canopy profile. The three canopy layers of leaf spectra showed contrasting patterns for light-demanding (Castanopsis chinensis, Castanopsis fissa, Schima superba, and Machilus chinensis) and shade-tolerant species (Cryptocarya chinensis and Cryptocarya concinna) along the vertical canopy profile. The spectra at the lower and upper canopy layers were more sensitive than the middle layer for tracking the variation of leaf chlorophyll and flavonoid content. Our results revealed that it is important to choose an appropriate canopy layer for the field sampling of tall trees, and we suggest that flavonoid is an important leaf trait that can be used for mapping and monitoring plant growth with hyperspectral remote sensing.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1737
Author(s):  
Kristýna Večeřová ◽  
Karel Klem ◽  
Barbora Veselá ◽  
Petr Holub ◽  
John Grace ◽  
...  

Plants produce specific terpenes, secondary metabolites conferring tolerance to biotic and abiotic stresses. Our study aims to investigate the effects of altitude, light intensity and season on contents of mono- and sesquiterpenes in needles of coniferous Norway spruce (Picea abies). Needles of current shoots representing upper and lower canopy were collected from adult trees growing along an altitudinal gradient (400–1100 m a.s.l.) in summer and autumn. After the extraction in cold heptane, the content of extractable terpenes was determined by gas chromatography coupled with mass spectrometry. Our results show that the total content of terpenes decreases with increasing altitude regardless of canopy position and season. Needles of the upper canopy have a higher total content of terpenes than lower canopy needles, but this difference decreases with increasing altitude in summer. Total content of extractable terpenes increases in autumn when compared to summer particularly in upper canopy needles of trees from high altitudes. Limonene, camphene, α-pinene and myrcene are the most abundant monoterpenes in spruce needles forming up to 85% of total monoterpenes, while germacrene D-4-ol is the most abundant sesquiterpene. Altitude, canopy position and season have a significant interactive effect on most monoterpenes, but not on sesquiterpenes. Terpenoid biosynthesis is thus tightly linked to growth conditions and likely plays a crucial role in the constitution of stress tolerance in evergreen conifers.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kevin L. Griffin ◽  
Stephanie C. Schmiege ◽  
Sarah G. Bruner ◽  
Natalie T. Boelman ◽  
Lee A. Vierling ◽  
...  

Arctic Treeline is the transition from the boreal forest to the treeless tundra and may be determined by growing season temperatures. The physiological mechanisms involved in determining the relationship between the physical and biological environment and the location of treeline are not fully understood. In Northern Alaska, we studied the relationship between temperature and leaf respiration in 36 white spruce (Picea glauca) trees, sampling both the upper and lower canopy, to test two research hypotheses. The first hypothesis is that upper canopy leaves, which are more directly coupled to the atmosphere, will experience more challenging environmental conditions and thus have higher respiration rates to facilitate metabolic function. The second hypothesis is that saplings [stems that are 5–10cm DBH (diameter at breast height)] will have higher respiration rates than trees (stems ≥10cm DBH) since saplings represent the transition from seedlings growing in the more favorable aerodynamic boundary layer, to trees which are fully coupled to the atmosphere but of sufficient size to persist. Respiration did not change with canopy position, however respiration at 25°C was 42% higher in saplings compared to trees (3.43±0.19 vs. 2.41±0.14μmolm−2 s−1). Furthermore, there were significant differences in the temperature response of respiration, and seedlings reached their maximum respiration rates at 59°C, more than two degrees higher than trees. Our results demonstrate that the respiratory characteristics of white spruce saplings at treeline impose a significant carbon cost that may contribute to their lack of perseverance beyond treeline. In the absence of thermal acclimation, the rate of leaf respiration could increase by 57% by the end of the century, posing further challenges to the ecology of this massive ecotone.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1427
Author(s):  
Tomas Karlsson ◽  
Leif Klemedtsson ◽  
Riikka Rinnan ◽  
Thomas Holst

In Europe, willow (Salix spp.) trees have been used commercially since the 1980s at a large scale to produce renewable energy. While reducing fossil fuel needs, growing short rotation coppices (SRCs), such as poplar or willow, may have a high impact on local air quality as these species are known to produce high amounts of isoprene, which can lead to the production of tropospheric ozone (O3). Here, we present a long-term leaf-scale study of biogenic volatile organic compound (BVOC) emissions from a Swedish managed willow site with the aim of providing information on the seasonal variability in BVOC emissions during two growing seasons, 2015–2016. Total BVOC emissions during these two seasons were dominated by isoprene (>96% by mass) and the monoterpene (MT) ocimene. The average standardized (STD, temperature of 30 °C and photosynthetically active radiation of 1000 µmol m−2 s−1) emission rate for isoprene was 45.2 (±42.9, standard deviation (SD)) μg gdw−1 h−1. Isoprene varied through the season, mainly depending on the prevailing temperature and light, where the measured emissions peaked in July 2015 and August 2016. The average STD emission for MTs was 0.301 (±0.201) μg gdw−1 h−1 and the MT emissions decreased from spring to autumn. The average STD emission for sesquiterpenes (SQTs) was 0.103 (±0.249) μg gdw−1 h−1, where caryophyllene was the most abundant SQT. The measured emissions of SQTs peaked in August both in 2015 and 2016. Non-terpenoid compounds were grouped as other VOCs (0.751 ± 0.159 μg gdw−1 h−1), containing alkanes, aldehydes, ketones, and other compounds. Emissions from all the BVOC groups decreased towards the end of the growing season. The more sun-adapted leaves in the upper part of the plantation canopy emitted higher rates of isoprene, MTs, and SQTs compared with more shade-adapted leaves in the lower canopy. On the other hand, emissions of other VOCs were lower from the upper part of the canopy compared with the lower part. Light response curves showed that ocimene and α-farnesene increased with light but only for the sun-adapted leaves, since the shade-adapted leaves did not emit ocimene and α-farnesene. An infestation with Melampsora spp. likely induced high emissions of, e.g., hexanal and nonanal in August 2015. The results from this study imply that upscaling BVOC emissions with model approaches should account for seasonality and also include the canopy position of leaves as a parameter to allow for better estimates for the regional and global budgets of ecosystem emissions.


2021 ◽  
Vol 4 ◽  
Author(s):  
Daisy C. Souza ◽  
Kolby J. Jardine ◽  
João V. F. C. Rodrigues ◽  
Bruno O. Gimenez ◽  
Alistair Rogers ◽  
...  

Leaf respiration in the dark (Rdark) and light (Rday) is poorly characterized in diverse tropical ecosystems, and little to no information exists on the degree of light suppression in common tree species within the Amazon basin, and their dependences upon plant functional traits and position within the canopy. We quantified Rdark and apparent Rday using the Kok method and measured key leaf traits in 26 tree individuals of different species distributed in three different canopy positions: canopy, lower canopy, and understory. To explore the relationships between the leaf traits we used the standardized major axis (SMA). We found that canopy trees had significantly higher rates of Rdark and Rday than trees in the understory. The difference between Rdark and Rday (the light suppression of respiration) was greatest in the understory (68 ± 9%, 95% CI) and lower canopy (49 ± 9%, 95% CI) when compared to the canopy (37 ± 10%, 95% CI). We also found that Rday was significantly and strongly correlated with Rdark (p < 0.001) for all the canopy positions. Also, leaf mass per area (LMA) and leaf Phosphorus concentration (P) had a significant relationship with Rdark (p < 0.001; p = 0.003), respectively. In addition, a significant relationship was found for LMA in the canopy and lower canopy positions (p = 0.009; p = 0.048) while P was only significant in the canopy (p = 0.044). Finally, no significant relationship was found between Rdark and nitrogen, sugars, and starch. Our results highlight the importance of including representation of the light suppression of leaf respiration in terrestrial biosphere models and also of accounting for vertical gradients within forest canopies and connections with functional traits.


Author(s):  
Sarawa ◽  
Halim ◽  
Dirvamena Boer ◽  
Asriningsih

The research aimed to study the cocoa bean quality and productivity based on their position on canopy and different plant ages. This has been conducted at cocoa farming area at Wonggeduku Subdistrict, Konawe Regency, Southeast Sulawesi Province. These treatments were arranged based on the nested design in which the pod position on the canopy i.e. on main stem, primary and secondary branches, and nested to the plant ages i.e. 8,10, 12, and 14 years old were used. The observed variable were pod length, pod diameter, seed weight, seed number, and dry production per pod. The data gathered were analysed by analysis of variance and the difference between treatments were justified by Duncan’s Multiple Range Test at 95% significant level. To study the relationship between plant ages and pod position on canopy, the regression analysis was applied. Research result showed that there were interaction effect on pod position and ages on all variable observed. The best treatment on the main stem and primary branch at eight year age of the plant was on the length, diameter and weight of pods, seed number, and dry seed production per pod. KEY WORDS: Cocoa pod, plant age, pod position, production, quality


2021 ◽  
Author(s):  
Kevin L Griffin ◽  
Stephanie C Schmeige ◽  
Sarah G Bruner ◽  
Natalie T Boelman ◽  
Lee A Vierling ◽  
...  

Arctic Treeline is the transition from the boreal forest to the treeless tundra and may be determined by growing season temperatures. The physiological mechanisms involved in determining the relationship between the physical and biological environment and the location of treeline are not fully understood. In Northern Alaska we studied the relationship between temperature and leaf respiration in 36 white spruce (Picea glauca) trees, sampling both the upper and lower canopy, to test two research hypotheses (H0). The first H01 is that canopy position will not influence leaf respiration. The associated alternative hypothesis (HA) is that the upper canopy leaves which are more directly coupled to the atmosphere will experience more challenging environmental conditions and thus have higher respiration rates to facilitate metabolic function. The second H02 is that tree size will not influence leaf respiration. The associated HA is that saplings (stems that are 5-10 cm DBH (diameter at breast height)) will have higher respiration rates than trees (stems ≥ 10 cm DBH) since saplings represent the transition from seedlings growing in the more favorable aerodynamic boundary layer, to trees which are fully coupled to the atmosphere but of sufficient size to persist. Respiration did not change with canopy position, however respiration at 25°C was 42% higher in saplings compared to trees (3.43 ± 0.19 vs. 2.41 ± 0.14 μmol m-2s-1). Furthermore, there were significant differences in the temperature response of respiration, and seedlings reached their maximum respiration rates at 59°C, more than two degrees higher than trees. Our results demonstrate that the respiratory characteristics of white spruce saplings at treeline are extreme, imposing a significant carbon cost that may contribute to their lack of perseverance beyond treeline. In the absence of thermal acclimation, the rate of leaf respiration could increase by 57% by the end of the century, posing further challenges to the ecology of this massive ecotone.


2021 ◽  
Author(s):  
Jennifer J Arp ◽  
Shrikaar Kambhampati ◽  
Kevin Chu ◽  
Somnath Koley ◽  
Lauren M Jenkins ◽  
...  

C4 photosynthesis is an adaptive photosynthetic pathway which concentrates CO2 around Rubisco in specialized bundle sheath cells to reduce photorespiration. Historically, the pathway has been characterized into three different subtypes based on the decarboxylase involved, although recent work has provided evidence that some plants can use multiple decarboxylases, with maize in particular using both the NADP-malic enzyme (NADP-ME) pathway and phosphoenolpyruvate carboxykinase (PEPCK) pathway. Parallel C4 pathways could be advantageous in balancing energy and reducing equivalents between bundle sheath and mesophyll cells, in decreasing the size of the metabolite gradients between cells and may better accommodate changing environmental conditions or source to sink demands on growth. The enzyme activity of C4 decarboxylases can fluctuate with different stages of leaf development, but it remains unclear if the pathway flexibility is an innate aspect of leaf development or an adaptation to the leaf microenvironment that is regulated by the plant. In this study, variation in the two C4 pathways in maize were characterized at nine plant ages throughout the life cycle. Two positions in the canopy were examined for variation in physiology, gene expression, metabolite concentration, and enzyme activity, with particular interest in asparagine as a potential regulator of C4 decarboxylase activity. Variation in C4 and C3 metabolism was observed for both leaf age and canopy position, reflecting the ability of C4 pathways to adapt to changing microenvironments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pavlina Drogoudi ◽  
Georgios E. Pantelidis ◽  
Stavroula A. Vekiari

Meteorological parameters and occurrences of cracking (CR), russeting (RS), and sun scald (SS) symptoms were monitored in a pomegranate cv. “Wonderful” orchard planted in a W–E orientation, during a 3-year study. Moreover, the efficacy of preharvest foliar sprays with acetylsalicylic acid (ASA; 0.5 mM or 1.0 mM), applied biweekly four to six times, on yield and fruit quality attributes were evaluated in a 2-year study. Fruit from the N-side of the canopy had greater CR and RS, whereas SS symptoms were lower, compared with the S-exposed part of the canopy. The N-side of the canopy had also substantially lower fruit number and yield, suggesting for an important role of light on bisexual flower formation and/or fruit set. Following the occurrences in CR and RS during the fruit maturation period, it was found that temperature fluctuation was the main cause. The presence of RS damages may also be related with increased relative humidity and water movement as symptoms were higher in years with higher values, in the N-side of the canopy and often occurred in the exposed and stylar end of the fruit. The ASA treatment substantially reduced RS by up to 57%, improved the peel red coloration, while anthocyanin, antioxidant capacity, and soluble solid contents in juice were higher. Foliar sprays with ASA did not affect yield, but induced a trend of bigger-sized fruit. In conclusion, planting in a N–S row orientation and selecting an orchard plantation site with a minimum temperature fluctuation and low relative humidity during the fruit-ripening period are measures to control CR and RS in pomegranate. ASA foliar applications proved to have beneficial effects on juice antioxidant contents, but more importantly on fruit appearance.


Sign in / Sign up

Export Citation Format

Share Document