Polycomb proteins as organizers of 3D genome architecture in embryonic stem cells

Author(s):  
Tomas Pachano ◽  
Giuliano Crispatzu ◽  
Alvaro Rada-Iglesias

Abstract Polycomb group proteins (PcGs) control the epigenetic and transcriptional state of developmental genes and regulatory elements during mammalian embryogenesis. Moreover, PcGs can also contribute to 3D genome organization, adding an additional layer of complexity to their regulatory functions. Understanding the mechanistic basis and the dynamics of PcG-dependent chromatin structures will help us untangle the full complexity of PcG function during development. Since most studies concerning the 3D organization of PcG-bound chromatin in mammals have been performed in embryonic stem cells (ESCs), here we will focus on this cell type characterized by its unique self-renewal and pluripotency properties. More specifically, we will highlight recent findings and discuss open questions regarding how PcG-dependent changes in 3D chromatin architecture control gene expression, cellular identity and differentiation potential in ESCs. We believe that this can serve to illustrate the diverse regulatory mechanisms by which PcG proteins control the proper execution of gene expression programs during mammalian embryogenesis.

2021 ◽  
Author(s):  
Candice Byers ◽  
Catrina Spruce ◽  
Haley J. Fortin ◽  
Anne Czechanski ◽  
Steven C. Munger ◽  
...  

AbstractGenetically diverse pluripotent stem cells (PSCs) display varied, heritable responses to differentiation cues in the culture environment. By harnessing these disparities through derivation of embryonic stem cells (ESCs) from the BXD mouse genetic reference panel, along with C57BL/6J (B6) and DBA/2J (D2) parental strains, we demonstrate genetically determined biases in lineage commitment and identify major regulators of the pluripotency epigenome. Upon transition to formative pluripotency using epiblast-like cells (EpiLCs), B6 quickly dissolves naïve networks adopting gene expression modules indicative of neuroectoderm lineages; whereas D2 retains aspects of naïve pluripotency with little bias in differentiation. Genetic mapping identifies 6 major trans-acting loci co-regulating chromatin accessibility and gene expression in ESCs and EpiLCs, indicating a common regulatory system impacting cell state transition. These loci distally modulate occupancy of pluripotency factors, including TRIM28, P300, and POU5F1, at hundreds of regulatory elements. One trans-acting locus on Chr 12 primarily impacts chromatin accessibility in ESCs; while in EpiLCs the same locus subsequently influences gene expression, suggesting early chromatin priming. Consequently, the distal gene targets of this locus are enriched for neurogenesis genes and were more highly expressed when cells carried B6 haplotypes at this Chr 12 locus, supporting genetic regulation of biases in cell fate. Spontaneous formation of embryoid bodies validated this with B6 showing a propensity towards neuroectoderm differentiation and D2 towards definitive endoderm, confirming the fundamental importance of genetic variation influencing cell fate decisions.


2020 ◽  
Vol 39 (11) ◽  
pp. 1518-1527
Author(s):  
S Mohammadi Nejad ◽  
M Hodjat ◽  
SA Mousavi ◽  
M Baeeri ◽  
MA Rezvanfar ◽  
...  

Ethephon, a member of the organophosphorus compounds, is one of the most widely used plant growth regulators for artificial ripening. Although million pounds of this chemical is being used annually, the knowledge regarding its molecular toxicity is yet not sufficient. The purpose of this study was to evaluate the potential developmental toxicity of ethephon using embryonic stem cell model. The mouse embryonic stem cells (mESCs) were exposed to various concentrations of ethephon and the viability, cell cycle alteration and changes in the gene expression profile were evaluated using high-throughput RNA sequencing. Further, the effect of ethephon on neural differentiation potential was examined. The results showed that ethephon at noncytotoxic doses induced cell cycle arrest in mESCs. Gene ontology enrichment analysis showed that terms related to cell fate and organismal development, including neuron fate commitment, embryo development and cardiac cell differentiation, were markedly enriched in ethephon-treated cells. Neural induction of mESCs in the presence of ethephon was inhibited and the expression of neural genes was decreased in differentiated cells. Results obtained from this work clearly demonstrate that ethephon affects the gene expression profile of undifferentiated mESCs and prevents neural differentiation. Therefore, more caution against the frequent application of ethephon is advised.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Dan-Ya Wu ◽  
Xinxin Li ◽  
Qiao-Ran Sun ◽  
Cheng-Li Dou ◽  
Tian Xu ◽  
...  

AbstractNuclear transfer embryonic stem cells (ntESCs) hold enormous promise for individual-specific regenerative medicine. However, the chromatin states of ntESCs remain poorly characterized. In this study, we employed ATAC-seq and Hi-C techniques to explore the chromatin accessibility and three-dimensional (3D) genome organization of ntESCs. The results show that the chromatin accessibility and genome structures of somatic cells are re-arranged to ESC-like states overall in ntESCs, including compartments, topologically associating domains (TADs) and chromatin loops. However, compared to fertilized ESCs (fESCs), ntESCs show some abnormal openness and structures that have not been reprogrammed completely, which impair the differentiation potential of ntESCs. The histone modification H3K9me3 may be involved in abnormal structures in ntESCs, including incorrect compartment switches and incomplete TAD rebuilding. Moreover, ntESCs and iPSCs show high similarity in 3D genome structures, while a few differences are detected due to different somatic cell origins and reprogramming mechanisms. Through systematic analyses, our study provides a global view of chromatin accessibility and 3D genome organization in ntESCs, which can further facilitate the understanding of the similarities and differences between ntESCs and fESCs.


2020 ◽  
Author(s):  
AS Knaupp ◽  
M Mohenska ◽  
MR Larcombe ◽  
E Ford ◽  
SM Lim ◽  
...  

AbstractCellular identity is ultimately controlled by transcription factors (TFs), which bind to specific regulatory elements (REs) within the genome to regulate gene expression and cell fate changes. While recent advances in genome-wide epigenetic profiling techniques have significantly increased our understanding of which REs are utilized in which cell type, it remains largely unknown which TFs and cofactors interact with these REs to modulate gene expression. A major hurdle in dissecting the whole composition of a multi-protein complex formed at a specific RE is the shortage of appropriate techniques. We have developed a novel method termed TALE-mediated Isolation of Nuclear Chromatin (TINC). TINC utilizes epitope-tagged TALEs to isolate a specific genomic region from the mammalian genome and includes a nuclei isolation and chromatin enrichment step for increased specificity. Upon cross-linking of the cells and isolation of the chromatin, the target region is purified based on affinity purification of the TALE and associated nucleic acid and protein molecules can be subjected to further analyses. A key TF in the pluripotency network and therefore in embryonic stem cells (ESCs) is NANOG. It is currently not fully understood how Nanog expression is regulated and consequently it remains unclear how the ESC state is maintained. Using TINC we dissected the protein complex formed at the Nanog promoter in mouse ESCs and identified many known and numerous novel factors.


2016 ◽  
Vol 01 (03) ◽  
pp. 201-208 ◽  
Author(s):  
Malini Krishnamoorthy ◽  
Brian Gerwe ◽  
Jamie Heimburg-Molinaro ◽  
Rachel Nash ◽  
Jagan Arumugham ◽  
...  

2019 ◽  
Vol 10 ◽  
Author(s):  
Lili An ◽  
Yanming Li ◽  
Yingjun Fan ◽  
Ning He ◽  
Fanlei Ran ◽  
...  

2012 ◽  
Vol 21 (7) ◽  
pp. 1134-1144 ◽  
Author(s):  
Neli P. Ragina ◽  
Karianne Schlosser ◽  
Jason G. Knott ◽  
Patricia K. Senagore ◽  
Pamela J. Swiatek ◽  
...  

2020 ◽  
Vol 88 ◽  
pp. S62
Author(s):  
Luis Galán Palma ◽  
Roshana Thambyrajah ◽  
Antonella Fidanza ◽  
Lesley Forrester ◽  
Pablo Menéndez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document