mammalian embryogenesis
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 28)

H-INDEX

22
(FIVE YEARS 5)

2021 ◽  
Vol 12 ◽  
Author(s):  
Ellen Menkhorst ◽  
Nandor Gabor Than ◽  
Udo Jeschke ◽  
Gabriela Barrientos ◽  
Laszlo Szereday ◽  
...  

Lectin-glycan interactions, in particular those mediated by the galectin family, regulate many processes required for a successful pregnancy. Over the past decades, increasing evidence gathered from in vitro and in vivo experiments indicate that members of the galectin family specifically bind to both intracellular and membrane bound carbohydrate ligands regulating angiogenesis, immune-cell adaptations required to tolerate the fetal semi-allograft and mammalian embryogenesis. Therefore, galectins play important roles in fetal development and placentation contributing to maternal and fetal health. This review discusses the expression and role of galectins during the course of pregnancy, with an emphasis on maternal immune adaptions and galectin-glycan interactions uncovered in the recent years. In addition, we summarize the galectin fingerprints associated with pathological gestation with particular focus on preeclampsia.


2021 ◽  
Author(s):  
Jonathan M Werner ◽  
Sara Ballouz ◽  
John Hover ◽  
Jesse Gillis

X-chromosome inactivation (XCI) is a random, permanent, and developmentally early epigenetic event that occurs during mammalian embryogenesis. We harness these features of XCI to investigate characteristics of early lineage specification events during human development. We initially assess the consistency of X-inactivation and establish a robust set of XCI-escape genes. By analyzing variance in XCI ratios across tissues and individuals, we find that XCI is completed prior to tissue specification and at a time when 6-16 cells are fated for all tissue lineages. Additionally, we exploit tissue specific variability to characterize the number of cells present at the time of each tissue's lineage commitment, ranging from approximately 20 cells in liver and whole blood tissues to 80 cells in brain tissues. By investigating variance of XCI ratios using adult tissue, we resolve key features of human development otherwise difficult to ascertain experimentally and develop scalable methods easily applicable to future data.


eNeuro ◽  
2021 ◽  
pp. ENEURO.0141-21.2021
Author(s):  
Wayne I. L. Davies ◽  
Soufien Sghari ◽  
Brian A. Upton ◽  
Christoffer Nord ◽  
Max Hahn ◽  
...  

2021 ◽  
Vol 56 (16) ◽  
pp. 2329-2347.e6 ◽  
Author(s):  
Mark S. Sharpley ◽  
Fangtao Chi ◽  
Johanna ten Hoeve ◽  
Utpal Banerjee

2021 ◽  
Author(s):  
Chengxiang Qiu ◽  
Junyue Cao ◽  
Tony Li ◽  
Sanjay Srivatsan ◽  
Xingfan Huang ◽  
...  

Mammalian embryogenesis is characterized by rapid cellular proliferation and diversification. Within a few weeks, a single cell zygote gives rise to millions of cells expressing a panoply of molecular programs, including much of the diversity that will subsequently be present in adult tissues. Although intensively studied, a comprehensive delineation of the major cellular trajectories that comprise mammalian development in vivo remains elusive. Here we set out to integrate several single cell RNA-seq datasets (scRNA-seq) that collectively span mouse gastrulation and organogenesis. We define cell states at each of 19 successive stages spanning E3.5 to E13.5, heuristically connect them with their pseudo-ancestors and pseudo-descendants, and for a subset of stages, deconvolve their approximate spatial distributions. Despite being constructed through automated procedures, the resulting trajectories of mammalian embryogenesis (TOME) are largely consistent with our contemporary understanding of mammalian development. We leverage TOME to nominate transcription factors (TF) and TF motifs as key regulators of each branch point at which a new cell type emerges. Finally, to facilitate comparisons across vertebrates, we apply the same procedures to single cell datasets of zebrafish and frog embryogenesis, and nominate "cell type homologs" based on shared regulators and transcriptional states.


Author(s):  
Ann Anderson Kiessling ◽  
Geoffrey M. Cooper

2021 ◽  
Author(s):  
Lizhong Liu ◽  
Anastasiia Nemashkalo ◽  
Ji Yoon Jung ◽  
Sapna Chhabra ◽  
M. Cecilia Guerra ◽  
...  

AbstractMorphogens are signaling molecules that convey positional information and dictate cell fates during development. Little is known about how morphogen gradients are created and interpreted during mammalian embryogenesis. Here we take advantage of a human gastruloid model to visualize endogenous Nodal protein in living cells. We show that Nodal is extremely short range so that Nodal protein is limited to the immediate neighborhood of source cells. Nodal activity spreads through a relay mechanism in which Nodal production induces neighboring cells to transcribe Nodal. We further show that the Nodal inhibitor Lefty, while biochemically capable of long-range diffusion, also acts locally to control the timing of Nodal spread and therefore of mesoderm differentiation during patterning. Our study establishes a novel paradigm for tissue patterning by an activator-inhibitor pair.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 143
Author(s):  
Giuseppe Zardo

CpG methylation in transposons, exons, introns and intergenic regions is important for long-term silencing, silencing of parasitic sequences and alternative promoters, regulating imprinted gene expression and determining X chromosome inactivation. Promoter CpG islands, although rich in CpG dinucleotides, are unmethylated and remain so during all phases of mammalian embryogenesis and development, except in specific cases. The biological mechanisms that contribute to the maintenance of the unmethylated state of CpG islands remain elusive, but the modification of established DNA methylation patterns is a common feature in all types of tumors and is considered as an event that intrinsically, or in association with genetic lesions, feeds carcinogenesis. In this review, we focus on the latest results describing the role that the levels of H3K4 trimethylation may have in determining the aberrant hypermethylation of CpG islands in tumors.


2020 ◽  
Vol 117 (51) ◽  
pp. 32519-32527 ◽  
Author(s):  
Boris Yagound ◽  
Emily J. Remnant ◽  
Gabriele Buchmann ◽  
Benjamin P. Oldroyd

The evolutionary significance of epigenetic inheritance is controversial. While epigenetic marks such as DNA methylation can affect gene function and change in response to environmental conditions, their role as carriers of heritable information is often considered anecdotal. Indeed, near-complete DNA methylation reprogramming, as occurs during mammalian embryogenesis, is a major hindrance for the transmission of nongenetic information between generations. Yet it remains unclear how general DNA methylation reprogramming is across the tree of life. Here we investigate the existence of epigenetic inheritance in the honey bee. We studied whether fathers can transfer epigenetic information to their daughters through DNA methylation. We performed instrumental inseminations of queens, each with four different males, retaining half of each male’s semen for whole genome bisulfite sequencing. We then compared the methylation profile of each father’s somatic tissue and semen with the methylation profile of his daughters. We found that DNA methylation patterns were highly conserved between tissues and generations. There was a much greater similarity of methylomes within patrilines (i.e., father-daughter subfamilies) than between patrilines in each colony. Indeed, the samples’ methylomes consistently clustered by patriline within colony. Samples from the same patriline had twice as many shared methylated sites and four times fewer differentially methylated regions compared to samples from different patrilines. Our findings indicate that there is no DNA methylation reprogramming in bees and, consequently, that DNA methylation marks are stably transferred between generations. This points to a greater evolutionary potential of the epigenome in invertebrates than there is in mammals.


Sign in / Sign up

Export Citation Format

Share Document