scholarly journals The qBED track: a novel genome browser visualization for point processes

Author(s):  
Arnav Moudgil ◽  
Daofeng Li ◽  
Silas Hsu ◽  
Deepak Purushotham ◽  
Ting Wang ◽  
...  

Abstract Summary Transposon calling cards is a genomic assay for identifying transcription factor binding sites in both bulk and single cell experiments. Here, we describe the qBED format, an open, text-based standard for encoding and analyzing calling card data. In parallel, we introduce the qBED track on the WashU Epigenome Browser, a novel visualization that enables researchers to inspect calling card data in their genomic context. Finally, through examples, we demonstrate that qBED files can be used to visualize non-calling card datasets, such as Combined Annotation-Dependent Depletion scores and GWAS/eQTL hits, and thus may have broad utility to the genomics community. Availability and implementation The qBED track is available on the WashU Epigenome Browser (http://epigenomegateway.wustl.edu/browser), beginning with version 46. Source code for the WashU Epigenome Browser with qBED support is available on GitHub (http://github.com/arnavm/eg-react and http://github.com/lidaof/eg-react). A complete definition of the qBED format is available as part of the WashU Epigenome Browser documentation (https://eg.readthedocs.io/en/latest/tracks.html#qbed-track). We have also released a tutorial on how to upload qBED data to the browser (http://dx.doi.org/10.17504/protocols.io.bca8ishw).

2020 ◽  
Author(s):  
Arnav Moudgil ◽  
Daofeng Li ◽  
Silas Hsu ◽  
Deepak Purushotham ◽  
Ting Wang ◽  
...  

AbstractSummaryTransposon calling cards is a genomic assay for identifying transcription factor binding sites in both bulk and single cell experiments. Here we describe the qBED format, an open, text-based standard for encoding and analyzing calling card data. In parallel, we introduce the qBED track on the WashU Epigenome Browser, a novel visualization that enables researchers to inspect calling card data in their genomic context. Finally, through examples, we demonstrate that qBED files can be used to visualize non-calling card datasets, such as CADD scores and GWAS/eQTL hits, and may have broad utility to the genomics community.Availability and ImplementationThe qBED track is available on the WashU Epigenome Browser (http://epigenomegateway.wustl.edu/browser), beginning with version 46. Source code for the WashU Epigenome Browser with qBED support is available on GitHub (http://github.com/arnavm/eg-react and http://github.com/lidaof/eg-react). We have also released a tutorial on how to upload qBED data to the browser (dx.doi.org/10.17504/protocols.io.bca8ishw).


2021 ◽  
Vol 11 (11) ◽  
pp. 5123
Author(s):  
Maiada M. Mahmoud ◽  
Nahla A. Belal ◽  
Aliaa Youssif

Transcription factors (TFs) are proteins that control the transcription of a gene from DNA to messenger RNA (mRNA). TFs bind to a specific DNA sequence called a binding site. Transcription factor binding sites have not yet been completely identified, and this is considered to be a challenge that could be approached computationally. This challenge is considered to be a classification problem in machine learning. In this paper, the prediction of transcription factor binding sites of SP1 on human chromosome1 is presented using different classification techniques, and a model using voting is proposed. The highest Area Under the Curve (AUC) achieved is 0.97 using K-Nearest Neighbors (KNN), and 0.95 using the proposed voting technique. However, the proposed voting technique is more efficient with noisy data. This study highlights the applicability of the voting technique for the prediction of binding sites, and highlights the outperformance of KNN on this type of data. The study also highlights the significance of using voting.


Sign in / Sign up

Export Citation Format

Share Document