Extended connectivity interaction features: improving binding affinity prediction through chemical description

Author(s):  
Norberto Sánchez-Cruz ◽  
José L Medina-Franco ◽  
Jordi Mestres ◽  
Xavier Barril

Abstract Motivation Machine-learning scoring functions (SFs) have been found to outperform standard SFs for binding affinity prediction of protein–ligand complexes. A plethora of reports focus on the implementation of increasingly complex algorithms, while the chemical description of the system has not been fully exploited. Results Herein, we introduce Extended Connectivity Interaction Features (ECIF) to describe protein–ligand complexes and build machine-learning SFs with improved predictions of binding affinity. ECIF are a set of protein−ligand atom-type pair counts that take into account each atom’s connectivity to describe it and thus define the pair types. ECIF were used to build different machine-learning models to predict protein–ligand affinities (pKd/pKi). The models were evaluated in terms of ‘scoring power’ on the Comparative Assessment of Scoring Functions 2016. The best models built on ECIF achieved Pearson correlation coefficients of 0.857 when used on its own, and 0.866 when used in combination with ligand descriptors, demonstrating ECIF descriptive power. Availability and implementation Data and code to reproduce all the results are freely available at https://github.com/DIFACQUIM/ECIF. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.

Author(s):  
Fergus Boyles ◽  
Charlotte M Deane ◽  
Garrett M Morris

Abstract Motivation Machine learning scoring functions for protein–ligand binding affinity prediction have been found to consistently outperform classical scoring functions. Structure-based scoring functions for universal affinity prediction typically use features describing interactions derived from the protein–ligand complex, with limited information about the chemical or topological properties of the ligand itself. Results We demonstrate that the performance of machine learning scoring functions are consistently improved by the inclusion of diverse ligand-based features. For example, a Random Forest (RF) combining the features of RF-Score v3 with RDKit molecular descriptors achieved Pearson correlation coefficients of up to 0.836, 0.780 and 0.821 on the PDBbind 2007, 2013 and 2016 core sets, respectively, compared to 0.790, 0.746 and 0.814 when using the features of RF-Score v3 alone. Excluding proteins and/or ligands that are similar to those in the test sets from the training set has a significant effect on scoring function performance, but does not remove the predictive power of ligand-based features. Furthermore a RF using only ligand-based features is predictive at a level similar to classical scoring functions and it appears to be predicting the mean binding affinity of a ligand for its protein targets. Availability and implementation Data and code to reproduce all the results are freely available at http://opig.stats.ox.ac.uk/resources. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Fergus Boyles ◽  
Charlotte M Deane ◽  
Garrett Morris

Machine learning scoring functions for protein-ligand binding affinity prediction have been found to consistently outperform classical scoring functions. Structure-based scoring functions for universal affinity prediction typically use features describing interactions derived from the protein-ligand complex, with limited information about the chemical or topological properties of the ligand itself. We demonstrate that the performance of machine learning scoring functions are consistently improved by the inclusion of diverse ligand-based features. For example, a Random Forest combining the features of RF-Score v3 with RDKit molecular descriptors achieved Pearson correlation coefficients of up to 0.831, 0.785, and 0.821 on the PDBbind 2007, 2013, and 2016 core sets respectively, compared to 0.790, 0.737, and 0.797 when using the features of RF-Score v3 alone. Excluding proteins and/or ligands that are similar to those in the test sets from the training set has a significant effect on scoring function performance, but does not remove the predictive power of ligand-based features. Furthermore a Random Forest using only ligand-based features is predictive at a level similar to classical scoring functions and it appears to be predicting the mean binding affinity of a ligand for its protein targets.<br>


Author(s):  
Fergus Boyles ◽  
Charlotte M Deane ◽  
Garrett Morris

Machine learning scoring functions for protein-ligand binding affinity prediction have been found to consistently outperform classical scoring functions. Structure-based scoring functions for universal affinity prediction typically use features describing interactions derived from the protein-ligand complex, with limited information about the chemical or topological properties of the ligand itself. We demonstrate that the performance of machine learning scoring functions are consistently improved by the inclusion of diverse ligand-based features. For example, a Random Forest combining the features of RF-Score v3 with RDKit molecular descriptors achieved Pearson correlation coefficients of up to 0.831, 0.785, and 0.821 on the PDBbind 2007, 2013, and 2016 core sets respectively, compared to 0.790, 0.737, and 0.797 when using the features of RF-Score v3 alone. Excluding proteins and/or ligands that are similar to those in the test sets from the training set has a significant effect on scoring function performance, but does not remove the predictive power of ligand-based features. Furthermore a Random Forest using only ligand-based features is predictive at a level similar to classical scoring functions and it appears to be predicting the mean binding affinity of a ligand for its protein targets.<br>


2020 ◽  
Vol 21 (22) ◽  
pp. 8424
Author(s):  
Yongbeom Kwon ◽  
Woong-Hee Shin ◽  
Junsu Ko ◽  
Juyong Lee

Accurate prediction of the binding affinity of a protein-ligand complex is essential for efficient and successful rational drug design. Therefore, many binding affinity prediction methods have been developed. In recent years, since deep learning technology has become powerful, it is also implemented to predict affinity. In this work, a new neural network model that predicts the binding affinity of a protein-ligand complex structure is developed. Our model predicts the binding affinity of a complex using the ensemble of multiple independently trained networks that consist of multiple channels of 3-D convolutional neural network layers. Our model was trained using the 3772 protein-ligand complexes from the refined set of the PDBbind-2016 database and tested using the core set of 285 complexes. The benchmark results show that the Pearson correlation coefficient between the predicted binding affinities by our model and the experimental data is 0.827, which is higher than the state-of-the-art binding affinity prediction scoring functions. Additionally, our method ranks the relative binding affinities of possible multiple binders of a protein quite accurately, comparable to the other scoring functions. Last, we measured which structural information is critical for predicting binding affinity and found that the complementarity between the protein and ligand is most important.


2020 ◽  
Author(s):  
Xujun Zhang ◽  
Chao Shen ◽  
Zhe Wang ◽  
Gaoqi Weng ◽  
Qing Ye ◽  
...  

Abstract Virtual screening (VS) based on molecular docking has emerged as one of the mainstream technologies of drug discovery due to its low cost and high efficiency. However, the scoring functions (SFs) implemented in most docking programs are not always accurate enough and how to improve their prediction accuracy is still a big challenge. Here, we propose an integrated platform called ASFP, a web server for the development of customized SFs for structure-based VS. There are three main modules in ASFP: 1) the descriptor generation module that can generate up to 3437 descriptors for the modelling of protein-ligand interactions; 2) the AI-based SF construction module that can establish target-specific SFs based on the pre-generated descriptors through three machine learning (ML) techniques; 3) the online prediction module that provides some well-constructed target-specific SFs for VS and a generic SF for binding affinity prediction. Our methodology has been validated on several benchmark datasets. The target-specific SFs can achieve an average ROC AUC of 0.841 towards 32 targets and the generic SF can achieve the Pearson correlation coefficient of 0.81 on the PDBbind version 2016 core set. To sum up, the ASFP server is a powerful tool for structure-based VS and binding affinity prediction. Availability and Implementation: ASFP web server is freely available at http://cadd.zju.edu.cn/asfp/.


Sign in / Sign up

Export Citation Format

Share Document