scholarly journals The Impact of Protein Structure and Sequence Similarity on the Accuracy of Machine-Learning Scoring Functions for Binding Affinity Prediction

Biomolecules ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 12 ◽  
Author(s):  
Hongjian Li ◽  
Jiangjun Peng ◽  
Yee Leung ◽  
Kwong-Sak Leung ◽  
Man-Hon Wong ◽  
...  
Author(s):  
Fergus Boyles ◽  
Charlotte M Deane ◽  
Garrett M Morris

Abstract Motivation Machine learning scoring functions for protein–ligand binding affinity prediction have been found to consistently outperform classical scoring functions. Structure-based scoring functions for universal affinity prediction typically use features describing interactions derived from the protein–ligand complex, with limited information about the chemical or topological properties of the ligand itself. Results We demonstrate that the performance of machine learning scoring functions are consistently improved by the inclusion of diverse ligand-based features. For example, a Random Forest (RF) combining the features of RF-Score v3 with RDKit molecular descriptors achieved Pearson correlation coefficients of up to 0.836, 0.780 and 0.821 on the PDBbind 2007, 2013 and 2016 core sets, respectively, compared to 0.790, 0.746 and 0.814 when using the features of RF-Score v3 alone. Excluding proteins and/or ligands that are similar to those in the test sets from the training set has a significant effect on scoring function performance, but does not remove the predictive power of ligand-based features. Furthermore a RF using only ligand-based features is predictive at a level similar to classical scoring functions and it appears to be predicting the mean binding affinity of a ligand for its protein targets. Availability and implementation Data and code to reproduce all the results are freely available at http://opig.stats.ox.ac.uk/resources. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Norberto Sánchez-Cruz ◽  
José L Medina-Franco ◽  
Jordi Mestres ◽  
Xavier Barril

Abstract Motivation Machine-learning scoring functions (SFs) have been found to outperform standard SFs for binding affinity prediction of protein–ligand complexes. A plethora of reports focus on the implementation of increasingly complex algorithms, while the chemical description of the system has not been fully exploited. Results Herein, we introduce Extended Connectivity Interaction Features (ECIF) to describe protein–ligand complexes and build machine-learning SFs with improved predictions of binding affinity. ECIF are a set of protein−ligand atom-type pair counts that take into account each atom’s connectivity to describe it and thus define the pair types. ECIF were used to build different machine-learning models to predict protein–ligand affinities (pKd/pKi). The models were evaluated in terms of ‘scoring power’ on the Comparative Assessment of Scoring Functions 2016. The best models built on ECIF achieved Pearson correlation coefficients of 0.857 when used on its own, and 0.866 when used in combination with ligand descriptors, demonstrating ECIF descriptive power. Availability and implementation Data and code to reproduce all the results are freely available at https://github.com/DIFACQUIM/ECIF. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Fergus Boyles ◽  
Charlotte M Deane ◽  
Garrett Morris

Machine learning scoring functions for protein-ligand binding affinity prediction have been found to consistently outperform classical scoring functions. Structure-based scoring functions for universal affinity prediction typically use features describing interactions derived from the protein-ligand complex, with limited information about the chemical or topological properties of the ligand itself. We demonstrate that the performance of machine learning scoring functions are consistently improved by the inclusion of diverse ligand-based features. For example, a Random Forest combining the features of RF-Score v3 with RDKit molecular descriptors achieved Pearson correlation coefficients of up to 0.831, 0.785, and 0.821 on the PDBbind 2007, 2013, and 2016 core sets respectively, compared to 0.790, 0.737, and 0.797 when using the features of RF-Score v3 alone. Excluding proteins and/or ligands that are similar to those in the test sets from the training set has a significant effect on scoring function performance, but does not remove the predictive power of ligand-based features. Furthermore a Random Forest using only ligand-based features is predictive at a level similar to classical scoring functions and it appears to be predicting the mean binding affinity of a ligand for its protein targets.<br>


Author(s):  
Fergus Boyles ◽  
Charlotte M Deane ◽  
Garrett Morris

Machine learning scoring functions for protein-ligand binding affinity prediction have been found to consistently outperform classical scoring functions. Structure-based scoring functions for universal affinity prediction typically use features describing interactions derived from the protein-ligand complex, with limited information about the chemical or topological properties of the ligand itself. We demonstrate that the performance of machine learning scoring functions are consistently improved by the inclusion of diverse ligand-based features. For example, a Random Forest combining the features of RF-Score v3 with RDKit molecular descriptors achieved Pearson correlation coefficients of up to 0.831, 0.785, and 0.821 on the PDBbind 2007, 2013, and 2016 core sets respectively, compared to 0.790, 0.737, and 0.797 when using the features of RF-Score v3 alone. Excluding proteins and/or ligands that are similar to those in the test sets from the training set has a significant effect on scoring function performance, but does not remove the predictive power of ligand-based features. Furthermore a Random Forest using only ligand-based features is predictive at a level similar to classical scoring functions and it appears to be predicting the mean binding affinity of a ligand for its protein targets.<br>


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Wajid Arshad Abbasi ◽  
Adiba Yaseen ◽  
Fahad Ul Hassan ◽  
Saiqa Andleeb ◽  
Fayyaz Ul Amir Afsar Minhas

Abstract Background Determining binding affinity in protein-protein interactions is important in the discovery and design of novel therapeutics and mutagenesis studies. Determination of binding affinity of proteins in the formation of protein complexes requires sophisticated, expensive and time-consuming experimentation which can be replaced with computational methods. Most computational prediction techniques require protein structures that limit their applicability to protein complexes with known structures. In this work, we explore sequence-based protein binding affinity prediction using machine learning. Method We have used protein sequence information instead of protein structures along with machine learning techniques to accurately predict the protein binding affinity. Results We present our findings that the true generalization performance of even the state-of-the-art sequence-only predictor is far from satisfactory and that the development of machine learning methods for binding affinity prediction with improved generalization performance is still an open problem. We have also proposed a sequence-based novel protein binding affinity predictor called ISLAND which gives better accuracy than existing methods over the same validation set as well as on external independent test dataset. A cloud-based webserver implementation of ISLAND and its python code are available at https://sites.google.com/view/wajidarshad/software. Conclusion This paper highlights the fact that the true generalization performance of even the state-of-the-art sequence-only predictor of binding affinity is far from satisfactory and that the development of effective and practical methods in this domain is still an open problem.


Sign in / Sign up

Export Citation Format

Share Document