scholarly journals PFRES: protein fold classification by using evolutionary information and predicted secondary structure

2007 ◽  
Vol 23 (21) ◽  
pp. 2843-2850 ◽  
Author(s):  
Ke Chen ◽  
Lukasz Kurgan
Author(s):  
András Micsonai ◽  
Éva Bulyáki ◽  
József Kardos

Abstract Far-UV circular dichroism (CD) spectroscopy is a classical method for the study of the secondary structure of polypeptides in solution. It has been the general view that the α-helix content can be estimated accurately from the CD spectra. However, the technique was less reliable to estimate the β-sheet contents as a consequence of the structural variety of the β-sheets, which is reflected in a large spectral diversity of the CD spectra of proteins containing this secondary structure component. By taking into account the parallel or antiparallel orientation and the twist of the β-sheets, the Beta Structure Selection (BeStSel) method provides an improved β-structure determination and its performance is more accurate for any of the secondary structure types compared to previous CD spectrum analysis algorithms. Moreover, BeStSel provides extra information on the orientation and twist of the β-sheets which is sufficient for the prediction of the protein fold. The advantage of CD spectroscopy is that it is a fast and inexpensive technique with easy data processing which can be used in a wide protein concentration range and under various buffer conditions. It is especially useful when the atomic resolution structure is not available, such as the case of protein aggregates, membrane proteins or natively disordered chains, for studying conformational transitions, testing the effect of the environmental conditions on the protein structure, for verifying the correct fold of recombinant proteins in every scientific fields working on proteins from basic protein science to biotechnology and pharmaceutical industry. Here, we provide a brief step-by-step guide to record the CD spectra of proteins and their analysis with the BeStSel method.


2018 ◽  
Author(s):  
Soumya Mishra ◽  
Loren L. Looger ◽  
Lauren L. Porter

AbstractAlthough most proteins conform to the classical one-structure/one-function paradigm, an increasing number of proteins with dual structures and functions are emerging. These fold-switching proteins remodel their secondary structures in response to cellular stimuli, fostering multi-functionality and tight cellular control. Accurate predictions of fold-switching proteins could both suggest underlying mechanisms for uncharacterized biological processes and reveal potential drug targets. Previously, we developed a prediction method for fold-switching proteins based on secondary structure predictions and structure-based thermodynamic calculations. Given the large number of genomic sequences without homologous experimentally characterized structures, however, we sought to predict fold-switching proteins from their sequences alone. To do this, we leveraged state-of-the-art secondary structure predictions, which require only amino acid sequences but are not currently designed to identify structural duality in proteins. Thus, we hypothesized that incorrect and inconsistent secondary structure predictions could be good initial predictors of fold-switching proteins. We found that secondary structure predictions of fold-switching proteins with solved structures are indeed less accurate than secondary structure predictions of non-fold-switching proteins with solved structures. These inaccuracies result largely from the conformations of fold-switching proteins that are underrepresented in the Protein Data Bank (PDB), and, consequently, the training sets of secondary structure predictors. Given that secondary structure predictions are homology-based, we hypothesized that decontextualizing the inaccurately-predicted regions of fold-switching proteins could weaken the homology relationships between these regions and their overpopulated structural representatives. Thus, we reran secondary structure predictions on these regions in isolation and found that they were significantly more inconsistent than in regions of non-fold-switching proteins. Thus, inconsistent secondary structure predictions can serve as a preliminary marker of fold switching. These findings have implications for genomics and the future development of secondary structure predictors.


2019 ◽  
Vol 28 (8) ◽  
pp. 1487-1493 ◽  
Author(s):  
Soumya Mishra ◽  
Loren L. Looger ◽  
Lauren L. Porter

Nature ◽  
2005 ◽  
Vol 437 (7058) ◽  
pp. 512-518 ◽  
Author(s):  
Michael Socolich ◽  
Steve W. Lockless ◽  
William P. Russ ◽  
Heather Lee ◽  
Kevin H. Gardner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document