scholarly journals ContrastRank: a new method for ranking putative cancer driver genes and classification of tumor samples

2014 ◽  
Vol 30 (17) ◽  
pp. i572-i578 ◽  
Author(s):  
Rui Tian ◽  
Malay K. Basu ◽  
Emidio Capriotti
2018 ◽  
Vol 5 (9) ◽  
pp. 1800640 ◽  
Author(s):  
Yingnan Hou ◽  
Bo Gao ◽  
Guojun Li ◽  
Zhengchang Su

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gabriel A. Colozza-Gama ◽  
Fabiano Callegari ◽  
Nikola Bešič ◽  
Ana C. de J. Paviza ◽  
Janete M. Cerutti

AbstractSomatic mutations in cancer driver genes can help diagnosis, prognosis and treatment decisions. Formalin-fixed paraffin-embedded (FFPE) specimen is the main source of DNA for somatic mutation detection. To overcome constraints of DNA isolated from FFPE, we compared pyrosequencing and ddPCR analysis for absolute quantification of BRAF V600E mutation in the DNA extracted from FFPE specimens and compared the results to the qualitative detection information obtained by Sanger Sequencing. Sanger sequencing was able to detect BRAF V600E mutation only when it was present in more than 15% total alleles. Although the sensitivity of ddPCR is higher than that observed for Sanger, it was less consistent than pyrosequencing, likely due to droplet classification bias of FFPE-derived DNA. To address the droplet allocation bias in ddPCR analysis, we have compared different algorithms for automated droplet classification and next correlated these findings with those obtained from pyrosequencing. By examining the addition of non-classifiable droplets (rain) in ddPCR, it was possible to obtain better qualitative classification of droplets and better quantitative classification compared to no rain droplets, when considering pyrosequencing results. Notable, only the Machine learning k-NN algorithm was able to automatically classify the samples, surpassing manual classification based on no-template controls, which shows promise in clinical practice.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ege Ülgen ◽  
O. Uğur Sezerman

Abstract Background Cancer develops due to “driver” alterations. Numerous approaches exist for predicting cancer drivers from cohort-scale genomics data. However, methods for personalized analysis of driver genes are underdeveloped. In this study, we developed a novel personalized/batch analysis approach for driver gene prioritization utilizing somatic genomics data, called driveR. Results Combining genomics information and prior biological knowledge, driveR accurately prioritizes cancer driver genes via a multi-task learning model. Testing on 28 different datasets, this study demonstrates that driveR performs adequately, achieving a median AUC of 0.684 (range 0.651–0.861) on the 28 batch analysis test datasets, and a median AUC of 0.773 (range 0–1) on the 5157 personalized analysis test samples. Moreover, it outperforms existing approaches, achieving a significantly higher median AUC than all of MutSigCV (Wilcoxon rank-sum test p < 0.001), DriverNet (p < 0.001), OncodriveFML (p < 0.001) and MutPanning (p < 0.001) on batch analysis test datasets, and a significantly higher median AUC than DawnRank (p < 0.001) and PRODIGY (p < 0.001) on personalized analysis datasets. Conclusions This study demonstrates that the proposed method is an accurate and easy-to-utilize approach for prioritizing driver genes in cancer genomes in personalized or batch analyses. driveR is available on CRAN: https://cran.r-project.org/package=driveR.


EBioMedicine ◽  
2018 ◽  
Vol 27 ◽  
pp. 156-166 ◽  
Author(s):  
Magali Champion ◽  
Kevin Brennan ◽  
Tom Croonenborghs ◽  
Andrew J. Gentles ◽  
Nathalie Pochet ◽  
...  

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
David Tamborero ◽  
Abel Gonzalez-Perez ◽  
Christian Perez-Llamas ◽  
Jordi Deu-Pons ◽  
Cyriac Kandoth ◽  
...  

Oral Oncology ◽  
2020 ◽  
Vol 104 ◽  
pp. 104614 ◽  
Author(s):  
Neil Mundi ◽  
Farhad Ghasemi ◽  
Peter Y.F. Zeng ◽  
Stephenie D. Prokopec ◽  
Krupal Patel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document