cancer driver genes
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 77)

H-INDEX

18
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Chenye Wang ◽  
Junhan Shi ◽  
Jiansheng Cai ◽  
Yusen Zhang ◽  
Xiaoqi Zheng ◽  
...  

Abstract Background: Recent advances in next-generation sequencing technologies have helped investigators generate massive amounts of cancer genomic data. A critical challenge in cancer genomics is identification of a few driver mutation genes from a much larger number of passenger mutation genes. However, majority of existing computational approaches underuse the co-occurrence information of the individuals, which deems to be important in tumorigenesis and tumor progression. Driver gene list predicted from these tools are prone to be false positive, recent research is far from achieving the ultimate goal of discovering a complete catalog of driver genes. Results: To make full use of co-mutation information, we present a random walk algorithm referred to as DriverRWH on a weighted gene mutation hypergraph model, using somatic mutation data and molecular interaction network data to prioritize candidate driver genes. Applied to tumor samples of different cancer types from The Cancer Genome Atlas (TCGA), DriverRWH shows significantly better performance than state-of-art prioritization methods in terms of the area under the curve (AUC) scores and the cumulative number of known driver genes recovered in top-ranked candidate genes. DriverRWH recovers approximately 50% known driver genes in the top 30 ranked candidate genes for more than half of the cancer types. In addition, DriverRWH is also highly robust to perturbations in the mutation data and gene functional network data. Conclusion: DriverRWH is effective among various cancer types in prioritizes cancer driver genes and provides considerable improvement over other tools with a better balance of precision and sensitivity. It can be a useful tool for detecting potential driver genes and facilitate targeted cancer therapies.


2021 ◽  
Author(s):  
Langyu Gu ◽  
Guofen Yang

Cancer is one of the most threatening diseases to humans. Understanding the evolution of cancer genes is helpful for therapy management. However, systematic investigation of the evolution of cancer driver genes is sparse. Using comparative genomic analysis, population genetics analysis and computational molecular evolutionary analysis, we detected the evolution of 568 cancer driver genes of 66 cancer types across the primate phylogeny (long timescale selection), and in modern human populations from the 1000 human genomics project (recent selection). We found that recent selection pressures, rather than long timescale selection, significantly affect the evolution of cancer driver genes in humans. Cancer driver genes related to morphological traits and local adaptation are under positive selection in different human populations. The African population showed the largest extent of divergence compared to other populations. It is worth noting that the corresponding cancer types of positively selected genes exhibited population-specific patterns, with the South Asian population possessing the least numbers of cancer types. This helps explain why the South Asian population usually has low cancer incidence rates. Population-specific patterns of cancer types whose driver genes are under positive selection also give clues to explain discrepancies of cancer incidence rates in different geographical populations, such as the high incidence rate of Wilms tumour in the African population and of Ewing's sarcomas in the European population. Our findings are thus helpful for understanding cancer evolution and providing guidance for further precision medicine.


2021 ◽  
pp. 096228022110558
Author(s):  
Ho-Hsiang Wu ◽  
Xing Hua ◽  
Jianxin Shi ◽  
Nilanjan Chatterjee ◽  
Bin Zhu

Identifying cancer driver genes is essential for understanding the mechanisms of carcinogenesis and designing therapeutic strategies. Although driver genes have been identified for many cancer types, it is still not clear whether the selection pressure of driver genes is homogeneous across cancer subtypes. We propose a statistical framework MutScot to improve the identification of driver genes and to investigate the heterogeneity of driver genes across cancer subtypes. Through simulation studies, we show that MutScot properly controls the type I error in detecting driver genes. In addition, we demonstrate that MutScot can identify subtype heterogeneity of driver genes. Applications to three studies in The Cancer Genome Atlas (TCGA) project showcase that MutScot has a desirable sensitivity for detecting driver genes and that MutScot identifies subtype heterogeneity of driver genes in breast cancer and lung cancer with regards to the status of hormone receptor and to the smoking status, respectively.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiao-wei Du ◽  
Gao Li ◽  
Juan Liu ◽  
Chun-yan Zhang ◽  
Qiong Liu ◽  
...  

Abstract Background Breast cancer is the most common malignancy in women. Cancer driver gene-mediated alterations in the tumor microenvironment are critical factors affecting the biological behavior of breast cancer. The purpose of this study was to identify the expression characteristics and prognostic value of cancer driver genes in breast cancer. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets are used as the training and test sets. Classified according to cancer and paracancerous tissues, we identified differentially expressed cancer driver genes. We further screened prognosis-associated genes, and candidate genes were submitted for the construction of a risk signature. Functional enrichment analysis and transcriptional regulatory networks were performed to search for possible mechanisms by which cancer driver genes affect breast cancer prognosis. Results We identified more than 200 differentially expressed driver genes and 27 prognosis-related genes. High-risk group patients had a lower survival rate compared to the low-risk group (P<0.05), and risk signature showed high specificity and sensitivity in predicting the patient prognosis (AUC 0.790). Multivariate regression analysis suggested that risk scores can independently predict patient prognosis. Further, we found differences in PD-1 expression, immune score, and stromal score among different risk groups. Conclusion Our study confirms the critical prognosis role of cancer driver genes in breast cancer. The cancer driver gene risk signature may provide a novel biomarker for clinical treatment strategy and survival prediction of breast cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gao Li ◽  
Xiaowei Du ◽  
Xiaoxiong Wu ◽  
Shen Wu ◽  
Yufei Zhang ◽  
...  

Background: Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality and heterogeneity. Genetic mutations caused by driver genes are important contributors to the formation of the tumor microenvironment. The purpose of this study is to discuss the expression of cancer driver genes in tumor tissues and their clinical value in predicting the prognosis of HCC.Methods: All data were sourced from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) public databases. Differentially expressed and prognostic genes were screened by the expression distribution of the cancer driver genes and their relationship with survival. Candidate genes were subjected to functional enrichment and transcription factor regulatory network. We further constructed a prognostic signature and analyzed the survival outcomes and immune status between different risk groups.Results: Most cancer driver genes are specifically expressed in cancer tissues. Driver genes may influence HCC progression through processes such as transcription, cell cycle, and T-cell receptor-related pathways. Patients in different risk groups had significant survival differences (p &lt; 0.05), and risk scores showed high predictive efficacy (AUC&gt;0.69). Besides, risk subgroups were also associated with multiple immune functions and immune cell content.Conclusion: We confirmed the critical role of cancer driver genes in mediating HCC progression and the immune microenvironment. Risk subgroups contribute to the assessment of prognostic value in different patients and explain the heterogeneity of HCC.


2021 ◽  
Author(s):  
Viola Fanfani ◽  
Ramon Vinas Torne ◽  
Pietro Lio' ◽  
Giovanni Stracquadanio

The identification of genes and pathways responsible for the transformation of normal cellsinto malignant ones represents a pivotal step to understand the aetiology of cancer, to characterise progression and relapse, and to ultimately design targeted therapies. The advent of high-throughput omic technologies has enabled the discovery of a significant number of cancer driver genes, but recent genomic studies have shown these to be only necessary but not sufficient to trigger tumorigenesis. Since most biological processes are the results of the interaction of multiple genes, it is then conceivable that tumorigenesis is likely the result of the action of networks of cancer driver and non-driver genes. Here we take advantage of recent advances in graph neural networks, combined with well established statistical models of network structure, to build a new model, called Stochastic Block Model Graph Neural Network (SBM-GNN), which predicts cancer driver genes and cancer mediating pathways directly from high-throughput omic experiments. Experimental analysis of synthetic datasets showed that our model can correctly predict genes associated with cancer and recover relevant pathways, while outperforming other state-of-the-art methods. Finally, we used SBM-GNN to perform a pan-cancer analysis, where we found genes and pathways directly involved with the hallmarks of cancer controlling genome stability, apoptosis, immune response, and metabolism.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sharaf J. Malebary ◽  
Yaser Daanial Khan

AbstractCancer is driven by distinctive sorts of changes and basic variations in genes. Recognizing cancer driver genes is basic for accurate oncological analysis. Numerous methodologies to distinguish and identify drivers presently exist, but efficient tools to combine and optimize them on huge datasets are few. Most strategies for prioritizing transformations depend basically on frequency-based criteria. Strategies are required to dependably prioritize organically dynamic driver changes over inert passengers in high-throughput sequencing cancer information sets. This study proposes a model namely PCDG-Pred which works as a utility capable of distinguishing cancer driver and passenger attributes of genes based on sequencing data. Keeping in view the significance of the cancer driver genes an efficient method is proposed to identify the cancer driver genes. Further, various validation techniques are applied at different levels to establish the effectiveness of the model and to obtain metrics like accuracy, Mathew’s correlation coefficient, sensitivity, and specificity. The results of the study strongly indicate that the proposed strategy provides a fundamental functional advantage over other existing strategies for cancer driver genes identification. Subsequently, careful experiments exhibit that the accuracy metrics obtained for self-consistency, independent set, and cross-validation tests are 91.08%., 87.26%, and 92.48% respectively.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ege Ülgen ◽  
O. Uğur Sezerman

Abstract Background Cancer develops due to “driver” alterations. Numerous approaches exist for predicting cancer drivers from cohort-scale genomics data. However, methods for personalized analysis of driver genes are underdeveloped. In this study, we developed a novel personalized/batch analysis approach for driver gene prioritization utilizing somatic genomics data, called driveR. Results Combining genomics information and prior biological knowledge, driveR accurately prioritizes cancer driver genes via a multi-task learning model. Testing on 28 different datasets, this study demonstrates that driveR performs adequately, achieving a median AUC of 0.684 (range 0.651–0.861) on the 28 batch analysis test datasets, and a median AUC of 0.773 (range 0–1) on the 5157 personalized analysis test samples. Moreover, it outperforms existing approaches, achieving a significantly higher median AUC than all of MutSigCV (Wilcoxon rank-sum test p < 0.001), DriverNet (p < 0.001), OncodriveFML (p < 0.001) and MutPanning (p < 0.001) on batch analysis test datasets, and a significantly higher median AUC than DawnRank (p < 0.001) and PRODIGY (p < 0.001) on personalized analysis datasets. Conclusions This study demonstrates that the proposed method is an accurate and easy-to-utilize approach for prioritizing driver genes in cancer genomes in personalized or batch analyses. driveR is available on CRAN: https://cran.r-project.org/package=driveR.


2021 ◽  
pp. candisc.1334.2020
Author(s):  
Heng Pan ◽  
Loic Renaud ◽  
Ronan Chaligne ◽  
Johannes Bloehdorn ◽  
Eugen Tausch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document