SiRNA Mediated Reduction in Abundance of the Bovine Oocyte-Specific Protein JY-1 Impedes Cumulus Expansion, Meiotic Maturation and Subsequent Embryonic Development Following In Vitro Fertilization.

2009 ◽  
Vol 81 (Suppl_1) ◽  
pp. 283-283 ◽  
Author(s):  
Gabbine Wee ◽  
Kyung-Bon Lee ◽  
James J. Ireland ◽  
George W. Smith
2019 ◽  
Author(s):  
Hua Xu ◽  
Xin Wang ◽  
Zhikai Wang ◽  
Jianhui Li ◽  
Zhiming Xu ◽  
...  

Abstract Background: MicroRNAs (miRNAs) are a class of noncoding small RNAs that play important roles in many physiological processes by regulating gene expression. Previous studies have shown that the expression levels of total miRNAs increase during mouse embryonic development, and some miRNAs control the regulatory network in development progression. However, few studies have focused on the effects of miRNAs on early human embryonic development. The relationship between miRNAs and early human embryogenesis is still unknown. Results:In this study, RNA-seq data collected from sperm samples from 102 patients with a normal sperm index but treated with assisted reproductive technology (ART) were analyzed for the relationships between differentially expressed small RNAs and the fertilization rate (FR), blastocyst rate and high-quality embryo rate (HQER). The sperm samples with high hsa-mir-191 expression had a higher FR, effective embryo rate (EER) and HQER. hsa-mir-191 was used as a single indicator to predict the HQER. The receiver operating characteristic (ROC) curve had an area under the ROC curve (AUC) of 0.686. We also found that hsa-mir-191 expression is correlated with an abnormal sperm rate (cor = 0.29, p< 0.01). We also evaluated the relationship between hsa-mir-34c and early human embryo development in these 102 sperm samples and obtained negative results. Conclusions: These findings suggest that high hsa-mir-191-5p expression in sperm is associated with early human embryonic quality and that hsa-mir-191-5p could be used as a potential marker to screen high-quality sperm to improve the success rates of in vitro fertilization (IVF).


2019 ◽  
Author(s):  
Hua Xu ◽  
Xin Wang ◽  
Zhikai Wang ◽  
Jianhui Li ◽  
Zhiming Xu ◽  
...  

Abstract Background : MicroRNAs (miRNAs) are a class of noncoding small RNAs that play important roles in many physiological processes by regulating gene expression. Previous studies have shown that the expression levels of total miRNAs increase during mouse embryonic development, and some miRNAs control the regulatory network in development progression. However, few studies have focused on the effects of miRNAs on early human embryonic development. The relationship between miRNAs and early human embryogenesis is still unknown. Results: In this study, sperm samples from 102 patients with a normal sperm index but treated with assisted reproductive technology (ART) were collected for small RNA sequencing, and the relationships between differentially expressed small RNAs and the fertilization rate (FR), blastocyst rate and high-quality embryo rate (HQER) were analyzed. The sperm samples with high hsa-mir-191 expression had a higher FR, effective embryo rate (EER) and HQER. hsa-mir-191 was used as a single indicator to predict the HQER. The receiver operating characteristic (ROC) curve had an area under the ROC curve (AUC) of 0.686. We also found that hsa-mir-191 expression is correlated with an abnormal sperm rate (cor = 0.29, p < 0.01). We also evaluated the relationship between hsa-mir-34c and early human embryo development in these 102 sperm samples and obtained negative results. Conclusions: These findings suggest that high hsa-mir-191-5p expression is associated with improved early human embryonic development and that hsa-mir-191-5p could be used as a potential marker to screen high-quality sperm to improve the success rates of in vitro fertilization (IVF).


1994 ◽  
Vol 9 (10) ◽  
pp. 1903-1908 ◽  
Author(s):  
Herman Tournaye ◽  
Marleen Van der Linden ◽  
Etienne Van den Abbeel ◽  
Paul Devroey ◽  
André Van Steirteghem

Sign in / Sign up

Export Citation Format

Share Document