scholarly journals Partial Separability and Functional Graphical Models for Multivariate Gaussian Processes

Biometrika ◽  
2021 ◽  
Author(s):  
J Zapata ◽  
S Y Oh ◽  
A Petersen

Abstract The covariance structure of multivariate functional data can be highly complex, especially if the multivariate dimension is large, making extensions of statistical methods for standard multivariate data to the functional data setting challenging. For example, Gaussian graphical models have recently been extended to the setting of multivariate functional data by applying multivariate methods to the coefficients of truncated basis expansions. However, a key difficulty compared to multivariate data is that the covariance operator is compact, and thus not invertible. The methodology in this paper addresses the general problem of covariance modelling for multivariate functional data, and functional Gaussian graphical models in particular. As a first step, a new notion of separability for the covariance operator of multivariate functional data is proposed, termed partial separability, leading to a novel Karhunen–Loève-type expansion for such data. Next, the partial separability structure is shown to be particularly useful in order to provide a well-defined functional Gaussian graphical model that can be identified with a sequence of finite-dimensional graphical models, each of identical fixed dimension. This motivates a simple and efficient estimation procedure through application of the joint graphical lasso. Empirical performance of the method for graphical model estimation is assessed through simulation and analysis of functional brain connectivity during a motor task.

2021 ◽  
Vol 17 (3) ◽  
pp. 1-33
Author(s):  
Beilun Wang ◽  
Jiaqi Zhang ◽  
Yan Zhang ◽  
Meng Wang ◽  
Sen Wang

Recently, the Internet of Things (IoT) receives significant interest due to its rapid development. But IoT applications still face two challenges: heterogeneity and large scale of IoT data. Therefore, how to efficiently integrate and process these complicated data becomes an essential problem. In this article, we focus on the problem that analyzing variable dependencies of data collected from different edge devices in the IoT network. Because data from different devices are heterogeneous and the variable dependencies can be characterized into a graphical model, we can focus on the problem that jointly estimating multiple, high-dimensional, and sparse Gaussian Graphical Models for many related tasks (edge devices). This is an important goal in many fields. Many IoT networks have collected massive multi-task data and require the analysis of heterogeneous data in many scenarios. Past works on the joint estimation are non-distributed and involve computationally expensive and complex non-smooth optimizations. To address these problems, we propose a novel approach: Multi-FST. Multi-FST can be efficiently implemented on a cloud-server-based IoT network. The cloud server has a low computational load and IoT devices use asynchronous communication with the server, leading to efficiency. Multi-FST shows significant improvement, over baselines, when tested on various datasets.


Biometrika ◽  
2020 ◽  
Vol 107 (2) ◽  
pp. 415-431
Author(s):  
Xinghao Qiao ◽  
Cheng Qian ◽  
Gareth M James ◽  
Shaojun Guo

Summary We consider estimating a functional graphical model from multivariate functional observations. In functional data analysis, the classical assumption is that each function has been measured over a densely sampled grid. However, in practice the functions have often been observed, with measurement error, at a relatively small number of points. We propose a class of doubly functional graphical models to capture the evolving conditional dependence relationship among a large number of sparsely or densely sampled functions. Our approach first implements a nonparametric smoother to perform functional principal components analysis for each curve, then estimates a functional covariance matrix and finally computes sparse precision matrices, which in turn provide the doubly functional graphical model. We derive some novel concentration bounds, uniform convergence rates and model selection properties of our estimator for both sparsely and densely sampled functional data in the high-dimensional large-$p$, small-$n$ regime. We demonstrate via simulations that the proposed method significantly outperforms possible competitors. Our proposed method is applied to a brain imaging dataset.


Author(s):  
Eunice Okome Obiang ◽  
Pascal Jézéquel ◽  
Frédéric Proïa

This paper is devoted to the estimation of a partial graphical model with a structural Bayesian penalization. Precisely, we are interested in the linear regression setting where the estimation is made through the direct links between potentially high-dimensional predictors and multiple responses, since it is known that Gaussian graphical models enable to exhibit direct links only, whereas coefficients in linear regressions contain both direct and indirect relations (due \textit {e.g.} to strong correlations among the variables). A smooth penalty reflecting a generalized Gaussian Bayesian prior on the covariates is added, either enforcing patterns (like row structures) in the direct links or regulating the joint influence of predictors. We give a theoretical guarantee for our method, taking the form of an upper bound on the estimation error arising with high probability, provided that the model is suitably regularized. Empirical studies on synthetic data and a real dataset are conducted.


2017 ◽  
Vol 42 (2) ◽  
Author(s):  
Vilda Purutçuoğlu ◽  
Ezgi Ayyıldız ◽  
Ernst Wit

AbstractIntroduction:The Gaussian Graphical Model (GGM) is one of the well-known probabilistic models which is based on the conditional independency of nodes in the biological system. Here, we compare the estimates of the GGM parameters by the graphical lasso (glasso) method and the threshold gradient descent (TGD) algorithm.Methods:We evaluate the performance of both techniques via certain measures such as specificity, F-measure and AUC (area under the curve). The analyses are conducted by Monte Carlo runs under different dimensional systems.Results:The results indicate that the TGD algorithm is more accurate than the glasso method in all selected criteria, whereas, it is more computationally demanding than this method too.Discussion and conclusion:Therefore, in high dimensional systems, we recommend glasso for its computational efficiency in spite of its loss in accuracy and we believe than the computational cost of the TGD algorithm can be improved by suggesting alternative steps in inference of the network.


2020 ◽  
Author(s):  
Donald Ray Williams

Studying complex relations in multivariate datasets is a common task across the sciences. Recently, the Gaussian graphical model has emerged as an increasingly popular model for characterizing the conditional dependence structure of random variables. Although the graphical lasso ($\ell_1$-regularization) is the most well-known estimator, it has several drawbacks that make it less than ideal for model selection. There are now alternative forms of regularization that were developed specifically to overcome issues inherent to the $\ell_1$-penalty.To date, however, these alternatives have been slow to work their way into software for research workers. To address this dearth of software, I developed the package \textbf{GGMncv} that includes a variety of nonconvex penalties, two algorithms for their estimation, plotting capabilities, and an approach for making statistical inference. As an added bonus, \textbf{GGMncv} can be used for nonconvex penalized least squares. After describing the various nonconvex penalties, the functionality of \textbf{GGMncv} is demonstrated through examples using a dataset from personality psychology.


Biometrics ◽  
2019 ◽  
Vol 75 (4) ◽  
pp. 1288-1298
Author(s):  
Gwenaël G. R. Leday ◽  
Sylvia Richardson

Sign in / Sign up

Export Citation Format

Share Document