gaussian graphical model
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 43)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ahmad Jayedi ◽  
Nasim Janbozorgi ◽  
Kurosh Djafarian ◽  
Mir Saeed Yekaninejad ◽  
Sakineh Shab-Bidar

Abstract Background Gaussian graphical model (GGM) has been introduced as a new approach to identify patterns of dietary intake. We aimed to investigate the link between dietary networks derived through GGM and obesity in Iranian adults. Method A cross-sectional study was conducted on 850 men and women (age range: 20–59 years) who attended the local health centers in Tehran. Dietary intake was evaluated by using a validated food frequency questionnaire. GGM was applied to identify dietary networks. The odds ratios (ORs) and 95% confidence intervals (CIs) of general and abdominal adiposity across tertiles of dietary network scores were estimated using logistic regression analysis controlling for age, sex, physical activity, smoking status, marital status, education, energy intake and menopausal status. Results GGM identified three dietary networks, where 30 foods were grouped into six communities. The identified networks were healthy, unhealthy and saturated fats networks, wherein cooked vegetables, processed meat and butter were, respectively, central to the networks. Being in the top tertile of saturated fats network score was associated with a higher likelihood of central obesity by waist-to-hip ratio (OR: 1.56, 95%CI: 1.08, 2.25; P for trend: 0.01). There was also a marginally significant positive association between higher unhealthy network score and odds of central obesity by waist circumference (OR: 1.37, 95%CI: 0.94, 2.37; P for trend: 0.09). Healthy network was not associated with central adiposity. There was no association between dietary network scores and general obesity. Conclusions Unhealthy and saturated fat dietary networks were associated with abdominal adiposity in adults. GGM-derived dietary networks represent dietary patterns and can be used to investigate diet-disease associations.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2692
Author(s):  
Madhawa Gunathilake ◽  
Jeong-Hee Lee ◽  
Il-Ju Choi ◽  
Young-Il Kim ◽  
Jeong-Seon Kim

We aimed to observe the combined effects of Gaussian graphical model (GGM)-derived dietary patterns and the gastric microbiome on the risk of gastric cancer (GC) in a Korean population. The study included 268 patients with GC and 288 healthy controls. Food intake was assessed using a 106-item semiquantitative food frequency questionnaire. GGMs were applied to derive dietary pattern networks. 16S rRNA gene sequencing was performed using DNA extracted from gastric biopsy samples. The fruit pattern network was inversely associated with the risk of GC for the highest vs. lowest tertiles in the total population (odds ratio (OR): 0.47; 95% confidence interval (CI): 0.28–0.77; p for trend = 0.003) and in females (OR: 0.38; 95% CI: 0.17–0.83; p for trend = 0.021). Males who had a low microbial dysbiosis index (MDI) and high vegetable and seafood pattern score showed a significantly reduced risk of GC (OR: 0.44; 95% CI: 0.22–0.91; p-interaction = 0.021). Females who had a low MDI and high dairy pattern score showed a significantly reduced risk of GC (OR: 0.23; 95% CI: 0.07–0.76; p-interaction = 0.018). Our novel findings revealed that vegetable and seafood pattern might interact with dysbiosis to attenuate the risk of GC in males, whereas the dairy pattern might interact with dysbiosis to reduce the GC risk in females.


Author(s):  
Jonas M. B. Haslbeck

AbstractStatistical network models such as the Gaussian Graphical Model and the Ising model have become popular tools to analyze multivariate psychological datasets. In many applications, the goal is to compare such network models across groups. In this paper, I introduce a method to estimate group differences in network models that is based on moderation analysis. This method is attractive because it allows one to make comparisons across more than two groups for all parameters within a single model and because it is implemented for all commonly used cross-sectional network models. Next to introducing the method, I evaluate the performance of the proposed method and existing approaches in a simulation study. Finally, I provide a fully reproducible tutorial on how to use the proposed method to compare a network model across three groups using the R-package mgm.


2021 ◽  
Author(s):  
Katherine Hoff Shutta ◽  
Laura B. Balzer ◽  
Denise M. Scholtens ◽  
Raji Balasubramanian

Multivariate biological data are often modeled using networks in which nodes represent a biological variable (e.g., genes) and edges represent associations (e.g., coexpression). A Gaussian graphical model (GGM), or partial correlation network, is an undirected graphical model in which a weighted edge between two nodes represents the magnitude of their partial correlation, and the absence of an edge indicates zero partial correlation. A GGM provides a roadmap of direct dependencies between variables, providing a valuable systems-level perspective. Many methods exist for estimating GGMs; estimated GGMs are typically highly sensitive to choice of method, posing an outstanding statistical challenge. We address this challenge by developing SpiderLearner, a tool that combines a range of candidate GGM estimation methods to construct an ensemble estimate as a weighted average of results from each candidate. In simulation studies, SpiderLearner performs better than or comparably to the best of the candidate methods. We apply SpiderLearner to estimate a GGM for gene expression in a publicly available dataset of 260 ovarian cancer patients. Using the community structure of the GGM, we develop a network-based risk score which we validate in six independent datasets. The risk score requires only seven genes, each of which has important biological function. Our method is flexible, extensible, and has demonstrated potential to identify de novo biomarkers for complex diseases. An open-source implementation of our method is available at https://github.com/katehoffshutta/SpiderLearner.


2021 ◽  
pp. 285-298
Author(s):  
Yipeng Liu ◽  
Jiani Liu ◽  
Zhen Long ◽  
Ce Zhu

Author(s):  
Mingyang Ren ◽  
Sanguo Zhang ◽  
Qingzhao Zhang ◽  
Shuangge Ma

Abstract Summary Heterogeneity is a hallmark of many complex human diseases, and unsupervised heterogeneity analysis has been extensively conducted using high-throughput molecular measurements and histopathological imaging features. ‘Classic’ heterogeneity analysis has been based on simple statistics such as mean, variance and correlation. Network-based analysis takes interconnections as well as individual variable properties into consideration and can be more informative. Several Gaussian graphical model (GGM)-based heterogeneity analysis techniques have been developed, but friendly and portable software is still lacking. To facilitate more extensive usage, we develop the R package HeteroGGM, which conducts GGM-based heterogeneity analysis using the advanced penaliztaion techniques, can provide informative summary and graphical presentation, and is efficient and friendly. Availabilityand implementation The package is available at https://CRAN.R-project.org/package=HeteroGGM. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document