conditional independency
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 1)

Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 552 ◽  
Author(s):  
Thomas Parr ◽  
Noor Sajid ◽  
Karl J. Friston

The segregation of neural processing into distinct streams has been interpreted by some as evidence in favour of a modular view of brain function. This implies a set of specialised ‘modules’, each of which performs a specific kind of computation in isolation of other brain systems, before sharing the result of this operation with other modules. In light of a modern understanding of stochastic non-equilibrium systems, like the brain, a simpler and more parsimonious explanation presents itself. Formulating the evolution of a non-equilibrium steady state system in terms of its density dynamics reveals that such systems appear on average to perform a gradient ascent on their steady state density. If this steady state implies a sufficiently sparse conditional independency structure, this endorses a mean-field dynamical formulation. This decomposes the density over all states in a system into the product of marginal probabilities for those states. This factorisation lends the system a modular appearance, in the sense that we can interpret the dynamics of each factor independently. However, the argument here is that it is factorisation, as opposed to modularisation, that gives rise to the functional anatomy of the brain or, indeed, any sentient system. In the following, we briefly overview mean-field theory and its applications to stochastic dynamical systems. We then unpack the consequences of this factorisation through simple numerical simulations and highlight the implications for neuronal message passing and the computational architecture of sentience.


2017 ◽  
Vol 42 (2) ◽  
Author(s):  
Vilda Purutçuoğlu ◽  
Ezgi Ayyıldız ◽  
Ernst Wit

AbstractIntroduction:The Gaussian Graphical Model (GGM) is one of the well-known probabilistic models which is based on the conditional independency of nodes in the biological system. Here, we compare the estimates of the GGM parameters by the graphical lasso (glasso) method and the threshold gradient descent (TGD) algorithm.Methods:We evaluate the performance of both techniques via certain measures such as specificity, F-measure and AUC (area under the curve). The analyses are conducted by Monte Carlo runs under different dimensional systems.Results:The results indicate that the TGD algorithm is more accurate than the glasso method in all selected criteria, whereas, it is more computationally demanding than this method too.Discussion and conclusion:Therefore, in high dimensional systems, we recommend glasso for its computational efficiency in spite of its loss in accuracy and we believe than the computational cost of the TGD algorithm can be improved by suggesting alternative steps in inference of the network.


Sign in / Sign up

Export Citation Format

Share Document