scholarly journals Upper cervical spine movement during intubation: fluoroscopic comparison of the AirWay Scope, McCoy laryngoscope, and Macintosh laryngoscope

2008 ◽  
Vol 100 (1) ◽  
pp. 120-124 ◽  
Author(s):  
K. Maruyama ◽  
T. Yamada ◽  
R. Kawakami ◽  
T. Kamata ◽  
M. Yokochi ◽  
...  
Anaesthesia ◽  
2007 ◽  
Vol 62 (10) ◽  
pp. 1050-1055 ◽  
Author(s):  
Y. Hirabayashi ◽  
A. Fujita ◽  
N. Seo ◽  
H. Sugimoto

2013 ◽  
Vol 31 (7) ◽  
pp. 1034-1036 ◽  
Author(s):  
Taylan Kılıç ◽  
Erkan Goksu ◽  
Dilek Durmaz ◽  
Günay Yıldız

Skull Base ◽  
2008 ◽  
Vol 18 (S 01) ◽  
Author(s):  
Harminder Singh ◽  
Bartosz Grobelny ◽  
Adam Flanders ◽  
Marc Rosen ◽  
Paul Schiffmacher ◽  
...  

2021 ◽  
pp. 1-7
Author(s):  
Marko Jug

<b><i>Introduction:</i></b> In the case of tumor resection in the upper cervical spine, a multilevel laminectomy with instrumented fixation is required to prevent kyphotic deformity and myelopathy. Nevertheless, instrumentation of the cervical spine in children under the age of 8 years is challenging due to anatomical considerations and unavailability of specific instrumentation. <b><i>Case Presentation:</i></b> We present a case of 3D-printed model-assisted cervical spine instrumentation in a 4-year-old child with post-laminectomy kyphotic decompensation of the cervical spine and spinal cord injury 1 year after medulloblastoma metastasis resection in the upper cervical spine. Due to unavailability of specific instrumentation, 3D virtual planning was used to assess and plan posterior cervical fixation. Fixation with 3.5 mm lateral mass and isthmic screws was suggested and the feasibility of fixation was confirmed “in vitro” in a 3D-printed model preoperatively to reduce the possibility of intraoperative implant-spine mismatch. Intraoperative conditions completely resembled the preoperative plan and 3.5 mm polyaxial screws were successfully used as planned. Postoperatively the child made a complete neurological recovery and 2 years after the instrumented fusion is still disease free with no signs of spinal decompensation. <b><i>Discussion/Conclusion:</i></b> Our case shows that posterior cervical fixation with the conventional screw-rod technique in a 4-year-old child is feasible, but we suggest that suitability and positioning of the chosen implants are preoperatively assessed in a printed 3D model. In addition, a printed 3D model offers the possibility to better visualize and sense spinal anatomy “in vivo,” thereby helping screw placement and reducing the chance for intraoperative complications, especially in the absence of intraoperative spinal navigation.


1981 ◽  
Vol 30 (1) ◽  
pp. 41-47
Author(s):  
M. Yamanaka ◽  
G. Awaya ◽  
S. Takata ◽  
N. Nishijima ◽  
S. Shimamura

2015 ◽  
Vol 101 (4) ◽  
pp. 519-522 ◽  
Author(s):  
G. Mirouse ◽  
A. Journe ◽  
L. Casabianca ◽  
P.E. Moreau ◽  
S. Pannier ◽  
...  

1997 ◽  
Vol 87 (6) ◽  
pp. 1335-1342 ◽  
Author(s):  
Andrew D. J. Watts ◽  
Adrian W. Gelb ◽  
David B. Bach ◽  
David M. Pelz

Background In the emergency trauma situation, in-line stabilization (ILS) of the cervical spine is used to reduce head and neck extension during laryngoscopy. The Bullard laryngoscope may result in less cervical spine movement than the Macintosh laryngoscope. The aim of this study was to compare cervical spine extension (measured radiographically) and time to intubation with the Bullard and Macintosh laryngoscopes during a simulated emergency with cervical spine precautions taken. Methods Twenty-nine patients requiring general anesthesia and endotracheal intubation were studied. Patients were placed on a rigid board and anesthesia was induced. Laryngoscopy was performed on four occasions: with the Bullard and Macintosh laryngoscopes both with and without manual ILS. Cricoid pressure was applied with ILS. To determine cervical spine extension, radiographs were exposed before and during laryngoscopy. Times to intubation and grade view of the larynx were also compared. Results Cervical spine extension (occiput-C5) was greatest with the Macintosh laryngoscope (25.9 degrees +/- 2.8 degrees). Extension was reduced when using the Macintosh laryngoscope with ILS (12.9 +/- 2.1 degrees) and the Bullard laryngoscope without stabilization (12.6 +/- 1.8 degrees; P &lt; 0.05). Times to intubation were similar for the Macintosh laryngoscope with ILS (20.3 +/- 12.8 s) and for the Bullard without ILS (25.6 +/- 10.4 s). Manual ILS with the Bullard laryngoscope results in further reduction in cervical spine extension (5.6 +/- 1.5 degrees) but prolongs time to intubation (40.3 +/- 19.5 s; P &lt; 0.05). Conclusions Cervical spine extension and time to intubation are similar for the Macintosh laryngoscope with ILS and the Bullard laryngoscope without ILS. However, time to intubation is significantly prolonged when the Bullard laryngoscope is used in a simulated emergency with cervical spine precautions taken. This suggests that the Bullard laryngoscope may be a useful adjunct to intubation of patients with potential cervical spine injury when time to intubation is not critical.


Sign in / Sign up

Export Citation Format

Share Document