spinal navigation
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 32)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Gianpaolo Jannelli ◽  
Alessandro Moiraghi ◽  
Luca Paun ◽  
Victor Cuvinciuc ◽  
Andrea Bartoli ◽  
...  

2022 ◽  
Vol 52 (1) ◽  
pp. E7

OBJECTIVE A direct comparison of intraoperative CT (iCT), cone-beam CT (CBCT), and robotic cone-beam CT (rCBCT) has been necessary to identify the ideal imaging solution for each individual user’s need. Herein, the authors sought to analyze workflow, handling, and performance of iCT, CBCT, and rCBCT imaging for navigated pedicle screw instrumentation across the entire spine performed within the same surgical environment by the same group of surgeons. METHODS Between 2014 and 2018, 503 consecutive patients received 2673 navigated pedicle screws using iCT (n = 1219), CBCT (n = 646), or rCBCT (n = 808) imaging during the first 24 months after the acquisition of each modality. Clinical and demographic data, workflow, handling, and screw assessment and accuracy were analyzed. RESULTS Intraoperative CT showed image quality and workflow advantages for cervicothoracic cases, obese patients, and long-segment instrumentation, whereas CBCT and rCBCT offered independent handling, around-the-clock availability, and the option of performing 2D fluoroscopy. All modalities permitted reliable intraoperative screw assessment. Navigated screw revision was possible with each modality and yielded final accuracy rates > 92% in all groups (iCT 96.2% vs CBCT 92.3%, p < 0.001) without a difference in the accuracy of cervical pedicle screw placement or the rate of secondary screw revision surgeries. CONCLUSIONS Continuous training and an individual setup of iCT, CBCT, and rCBCT has been shown to permit safe and precise navigated posterior instrumentation across the entire spine with reliable screw assessment and the option of immediate revision. The perceived higher image quality and larger scan area of iCT should be weighed against the around-the-clock availability of CBCT and rCBCT technology with the option of single-handed robotic image acquisition.


2021 ◽  
Vol 7 (8) ◽  
pp. 159
Author(s):  
Laura Schütz ◽  
Caroline Brendle ◽  
Javier Esteban ◽  
Sandro M. Krieg ◽  
Ulrich Eck ◽  
...  

Screw placement in the correct angular trajectory is one of the most intricate tasks during spinal fusion surgery. Due to the crucial role of pedicle screw placement for the outcome of the operation, spinal navigation has been introduced into the clinical routine. Despite its positive effects on the precision and safety of the surgical procedure, local separation of the navigation information and the surgical site, combined with intricate visualizations, limit the benefits of the navigation systems. Instead of a tech-driven design, a focus on usability is required in new research approaches to enable advanced and effective visualizations. This work presents a new tool-mounted interface (TMI) for pedicle screw placement. By fixing a TMI onto the surgical instrument, physical de-coupling of the anatomical target and navigation information is resolved. A total of 18 surgeons participated in a usability study comparing the TMI to the state-of-the-art visualization on an external screen. With the usage of the TMI, significant improvements in system usability (Kruskal–Wallis test p < 0.05) were achieved. A significant reduction in mental demand and overall cognitive load, measured using a NASA-TLX (p < 0.05), were observed. Moreover, a general improvement in performance was shown by means of the surgical task time (one-way ANOVA p < 0.001).


2021 ◽  
Vol 1 (26) ◽  
Author(s):  
Angelo Rusconi ◽  
Paolo Roccucci ◽  
Stefano Peron ◽  
Roberto Stefini

BACKGROUND Thoracic disc herniation (TDH) represents a challenge for spine surgeons. The goal of this study is to report the surgical technique and clinical results concerning the application of navigation to anterior transthoracic approaches. OBSERVATIONS Between 2017 and 2019, 8 patients with TDH were operated in the lateral decubitus by means of mini-open thoracotomy. An adapted patient referent frame was secured to the iliac wing. The high-speed drill was also navigated. Intraoperative three-dimensional scans were used for level identification, optimized drilling trajectory, and assessment of complete resection. At 12 months follow up, all patients were ambulatory. Seven out of 8 patients (87%) experienced a postoperative neurological improvement. We observed 2 postoperative complications: 1 case of pleural effusion and 1 case of abdominal wall weakness. LESSONS In order to increase the safety of anterior transthoracic discectomy, the authors applied the concepts of spinal navigation to the thoracotomy setting. The advantages of this technique include decrease in wrong-level procedure, continuous matching of intraoperative and navigation anatomical findings, better exposure of the TDH, optimized vertebral body drilling, and minimized risk of neurological damage. In conclusion, the authors consider spinal navigation as an important resource for the surgical treatment of patients with TDH.


2021 ◽  
Vol 21 (Supplement_1) ◽  
pp. S48-S56
Author(s):  
Siri Sahib S Khalsa ◽  
Praveen V Mummaneni ◽  
Dean Chou ◽  
Paul Park

Abstract Enabling technologies include surgical planning software, computer-assisted navigation, intraoperative three-dimensional (3D) imaging, and robotic systems. Presently, these technologies are in various stages of refinement. Spinal robots in particular are currently limited to the positioning of an alignment guide for pedicle screw placement. Current generation spinal robots, therefore, play a more limited role in spinal surgery. In contrast to spinal robots, intraoperative imaging technology has been developed further, to a stage that allows accurate 3D spinal image acquisition that can be readily utilized for spinal navigation. The integration of these various technologies has the potential to maximize the safety, consistency, reliability, and efficacy of surgical procedures. To that end, the trend for manufacturers is to incorporate various enabling technologies into the spinal robotic systems. In the near-term, it is expected that integration of more advanced planning software and navigation will result in wider applicability and value. In the long-term, there are a variety of enabling technologies such as augmented reality that may be a component of spinal robots. This article reviews the features of currently available spinal robots and discusses the likely future advancements of robotic platforms in the near- and long-term.


2021 ◽  
Vol 21 (Supplement_1) ◽  
pp. S23-S38
Author(s):  
Elie Massaad ◽  
Ganesh M Shankar ◽  
John H Shin

Abstract Computer-assisted navigation has made a major impact on spine surgery, providing surgeons with technological tools to safely place instrumentation anywhere in the spinal column. With advances in intraoperative image acquisition, registration, and processing, many surgeons are now using navigation in their practices. The incorporation of navigation into the workflow of surgeons continues to expand with the evolution of minimally invasive techniques and robotic surgery. While numerous investigators have demonstrated the benefit of navigation for improving the accuracy of instrumentation, few have reported applying this technology to other aspects of spine surgery. Surgeries to correct spinal deformities and resect spinal tumors are technically demanding, incorporating a wide range of techniques not only for instrumentation placement but also for osteotomy planning and executing the goals of surgery. Although these subspecialties vary in their objectives, they share similar challenges with potentially high complications, invasiveness, and consequences of failed execution. Herein, we highlight the utility of using spinal navigation for applications beyond screw placement: specifically, for planning and executing osteotomies and guiding the extent of tumor resection. A narrative review of the work that has been done is supplemented with illustrative cases demonstrating these applications.


2021 ◽  
Author(s):  
Christopher Alvarez-Breckenridge ◽  
Matthew Muir ◽  
Laurence D Rhines ◽  
Claudio E Tatsui

Abstract BACKGROUND With the advent of intraoperative computed tomography (CT) for image guidance, numerous examples of accurate navigation being applied to cranial and spinal pathology have come to light. For spinal disorders, the utilization of image guidance for the placement of percutaneous spinal instrumentation, complex osteotomies, and minimally invasive approaches are frequently utilized in trauma, degenerative, and oncological pathologies. The use of intraoperative CT for navigation, however, requires a low target registration error that must be verified throughout the procedure to confirm the accuracy of image guidance. OBJECTIVE To present the use of skin staples as a sterile, economical fiducial marker for minimally invasive spinal procedures requiring intraoperative CT navigation. METHODS Staples are applied to the skin prior to obtaining the registration CT scan and maintained throughout the remainder of the surgery to facilitate confirmation of image guidance accuracy. RESULTS This low-cost, simple, sterile approach provides surface landmarks that allow reliable verification of navigation accuracy during percutaneous spinal procedures using intraoperative CT scan image guidance. CONCLUSION The utilization of staples as a fiducial marker represents an economical and easily adaptable technique for ensuring accuracy of image guidance with intraoperative CT navigation.


Sign in / Sign up

Export Citation Format

Share Document