scholarly journals Morphology of the planum temporale and corpus callosum in left handers with evidence of left and right hemisphere speech representation

Brain ◽  
1998 ◽  
Vol 121 (12) ◽  
pp. 2369-2379 ◽  
Author(s):  
S. Moffat
1995 ◽  
Vol 6 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Janet Metcalfe ◽  
Margaret Funnell ◽  
Michael S. Gazzaniga

Six experiments explored hemispheric memory differences in a patient who had undergone complete corpus callosum resection The right hemisphere was better able than the left to reject new events similar to originally presented materials of several types, including abstract visual forms, faces, and categorized lists of words Although the left hemisphere is capable of mental manipulation, imagination, semantic priming, and complex language production, these functions are apparently linked to memory confusions—confusions less apparent in the more literal right hemisphere Differences between the left and right hemispheres in memory for new schematically consistent or categorically related events may provide a source of information allowing people to distinguish between what they actually witnessed and what they only inferred


2006 ◽  
Author(s):  
Cristina Isaacs ◽  
Nichole McWhorter ◽  
Teri McHale ◽  
Lorrie N. Shiota ◽  
Henry V. Soper

Author(s):  
Lisa Bartha-Doering ◽  
Ernst Schwartz ◽  
Kathrin Kollndorfer ◽  
Florian Ph. S. Fischmeister ◽  
Astrid Novak ◽  
...  

AbstractThe present study is interested in the role of the corpus callosum in the development of the language network. We, therefore, investigated language abilities and the language network using task-based fMRI in three cases of complete agenesis of the corpus callosum (ACC), three cases of partial ACC and six controls. Although the children with complete ACC revealed impaired functions in specific language domains, no child with partial ACC showed a test score below average. As a group, ACC children performed significantly worse than healthy controls in verbal fluency and naming. Furthermore, whole-brain ROI-to-ROI connectivity analyses revealed reduced intrahemispheric and right intrahemispheric functional connectivity in ACC patients as compared to controls. In addition, stronger functional connectivity between left and right temporal areas was associated with better language abilities in the ACC group. In healthy controls, no association between language abilities and connectivity was found. Our results show that ACC is associated not only with less interhemispheric, but also with less right intrahemispheric language network connectivity in line with reduced verbal abilities. The present study, thus, supports the excitatory role of the corpus callosum in functional language network connectivity and language abilities.


1957 ◽  
Vol 103 (433) ◽  
pp. 758-772 ◽  
Author(s):  
Victor Meyer ◽  
H. Gwynne Jones

Various investigations into the effects of brain injury on psychological test performance (Weisenburg and McBride, 1935; Patterson and Zangwill, 1944; Anderson, 1951; McFie and Piercy, 1952; Bauer and Becka, 1954; Milner, 1954) suggest the overall conclusion that patients with left hemisphere lesions are relatively poor at verbal tasks, while those with right-sided lesions do worst at practical tasks, particularly the manipulation of spatial or spatio-temporal relationships. Heilbfun's (1956) study confirmed that verbal deficits result from left-sided lesions but his left and right hemisphere groups produced almost identical scores on spatial tests. In so far as these workers paid attention to the specific sites of the lesions, their findings indicate that the pattern of test performance is a function of the hemisphere in which the lesion occurs rather than of its specific locus.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Martha M. Shiell ◽  
François Champoux ◽  
Robert J. Zatorre

After sensory loss, the deprived cortex can reorganize to process information from the remaining modalities, a phenomenon known as cross-modal reorganization. In blind people this cross-modal processing supports compensatory behavioural enhancements in the nondeprived modalities. Deaf people also show some compensatory visual enhancements, but a direct relationship between these abilities and cross-modally reorganized auditory cortex has only been established in an animal model, the congenitally deaf cat, and not in humans. Using T1-weighted magnetic resonance imaging, we measured cortical thickness in the planum temporale, Heschl’s gyrus and sulcus, the middle temporal area MT+, and the calcarine sulcus, in early-deaf persons. We tested for a correlation between this measure and visual motion detection thresholds, a visual function where deaf people show enhancements as compared to hearing. We found that the cortical thickness of a region in the right hemisphere planum temporale, typically an auditory region, was greater in deaf individuals with better visual motion detection thresholds. This same region has previously been implicated in functional imaging studies as important for functional reorganization. The structure-behaviour correlation observed here demonstrates this area’s involvement in compensatory vision and indicates an anatomical correlate, increased cortical thickness, of cross-modal plasticity.


Aphasiology ◽  
1987 ◽  
Vol 1 (3) ◽  
pp. 257-262 ◽  
Author(s):  
Delaina Walker-batson ◽  
Mary M. Barton ◽  
John S. Wendt ◽  
Sharon Reynolds

NeuroImage ◽  
2000 ◽  
Vol 11 (5) ◽  
pp. S136
Author(s):  
M. Staudt ◽  
G. Niemann ◽  
Michael Erb ◽  
Dirk Wildgruber ◽  
I. Kraegeloh-Mann ◽  
...  

2018 ◽  
Vol 18 ◽  
pp. 342-355 ◽  
Author(s):  
Peter Goodin ◽  
Gemma Lamp ◽  
Rishma Vidyasagar ◽  
David McArdle ◽  
Rüdiger J. Seitz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document