scholarly journals Refuting the hypothesis that a unilateral human parietal lesion abolishes saccade corollary discharge

Brain ◽  
2015 ◽  
Vol 138 (12) ◽  
pp. 3760-3775 ◽  
Author(s):  
Kate Rath-Wilson ◽  
Daniel Guitton
2014 ◽  
Vol 112 (2) ◽  
pp. 328-339 ◽  
Author(s):  
Karina Alviña ◽  
Nathaniel B. Sawtell

Although it has been suggested that the cerebellum functions to predict the sensory consequences of motor commands, how such predictions are implemented in cerebellar circuitry remains largely unknown. A detailed and relatively complete account of predictive mechanisms has emerged from studies of cerebellum-like sensory structures in fish, suggesting that comparisons of the cerebellum and cerebellum-like structures may be useful. Here we characterize electrophysiological response properties of Purkinje cells in a region of the cerebellum proper of weakly electric mormyrid fish, the posterior caudal lobe (LCp), which receives the same mossy fiber inputs and projects to the same target structures as the electrosensory lobe (ELL), a well-studied cerebellum-like structure. We describe patterns of simple spike and climbing fiber activation in LCp Purkinje cells in response to motor corollary discharge, electrosensory, and proprioceptive inputs and provide evidence for two functionally distinct Purkinje cell subtypes within LCp. Protocols that induce rapid associative plasticity in ELL fail to induce plasticity in LCp, suggesting differences in the adaptive functions of the two structures. Similarities and differences between LCp and ELL are discussed in light of these results.


1989 ◽  
Vol 146 (1) ◽  
pp. 229-253 ◽  
Author(s):  
C. C. Bell

Weakly electric fish use their electrosensory systems for electrocommunication, active electrolocation and low-frequency passive electrolocation. In electric fish of the family Mormyridae, these three purposes are mediated by separate classes of electroreceptors: electrocommunication by Knollenorgan electroreceptors, active electrolocation by Mormyromast electroreceptors and low-frequency passive electrolocation by ampullary electroreceptors. The primary afferent fibres from each class of electroreceptors terminate in a separate central region. Thus, the mormyrid electrosensory system has three anatomically and functionally distinct subsystems. This review describes the sensory coding and initial processing in each of the three subsystems, with an emphasis on the Knollenorgan and Mormyromast subsystems. The Knollenorgan subsystem is specialized for the measurement of temporal information but appears to ignore both intensity and spatial information. In contrast, the Mormyromast subsystem is specialized for the measurement of both intensity and spatial information. The morphological and physiological characteristics of the primary afferents and their central projection regions are quite different for the two subsystems and reflect the type of information which the subsystems preserve. This review also describes the electric organ corollary discharge (EOCD) effects which are present in the central projection regions of each of the three electrosensory subsystems. These EOCD effects are driven by the motor command that drives the electric organ to discharge. The EOCD effects are different in each of the three subsystems and these differences reflect differences in both the pattern and significance of the sensory information that is evoked by the fish's own electric organ discharge. Some of the EOCD effects are invariant, whereas others are plastic and depend on previous afferent input. The mormyrid work is placed within two general contexts: (a) the measurement of time and intensity in sensory systems, and (b) the various roles of motor command (efferent) signals and self-induced sensory (reafferent) signals in sensorimotor systems.


1996 ◽  
Vol 199 (3) ◽  
pp. 673-681 ◽  
Author(s):  
G Hjelmstad ◽  
G Parks ◽  
D Bodznick

The dorsal granular ridge (DGR) of the elasmobranch vestibulolateral cerebellum is the source of a parallel fiber projection to the electrosensory dorsal nucleus. We report that the DGR in Raja erinacea contains a large percentage of units with activity modulated by the animal's own ventilation. These include propriosensory and electrosensory units, responding to either ventilatory movements or the resulting electroreceptive reafference, and an additional population of units in which activity is phase-locked to the ventilatory motor commands even in animals paralyzed to block all ventilatory movements. A principal function of processing in the dorsal nucleus is the elimination of ventilatory noise in second-order electrosensory neurons. The existence of these ventilatory motor corollary discharge units, along with other DGR units responsive to ventilatory movements, suggests that the parallel fiber projection is involved in the noise cancellation mechanisms.


Science ◽  
1983 ◽  
Vol 221 (4616) ◽  
pp. 1193-1195 ◽  
Author(s):  
B. Guthrie ◽  
J. Porter ◽  
D. Sparks

2019 ◽  
Vol 38 (01) ◽  
pp. 047-050
Author(s):  
Gonçalo Figueiredo ◽  
Sérgio Moreira ◽  
Célia Pinheiro ◽  
Alfredo Calheiros

AbstractAnaplastic oligodendrogliomas (AOs) correspond to ∼ 23% of all oligodendrogliomas. They correspond to a tumor with malignant histological characteristics, focal or diffuse, associated with a worse prognosis. In the present case report, we describe the case of a 30-year-old female submitted to resection of a right parietal lesion whose histology showed to be an AO. She underwent complementary treatment with chemotherapy and radiotherapy according to the Roger Stupp protocol. Four years after the initial diagnosis, there was tumor recurrence within the superior sagittal sinus, with no evidence of recurrence elsewhere. In the literature, we have found no similar published case reinforcing the rarity of this condition


Sign in / Sign up

Export Citation Format

Share Document