sensory structures
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 46)

H-INDEX

26
(FIVE YEARS 2)

ENTOMON ◽  
2021 ◽  
Vol 46 (4) ◽  
pp. 313-324
Author(s):  
Anupama Saha ◽  
Susmita Gupta

Structures on the legs of two hemipteran bugs, Micronecta haliploides (Horvath, 1904) and Hydrometra greeni (Kirkaldy, 1898), belonging to family Micronectidae and Hydrometridae of two infra orders Nepomorpha and Gerromorpha, respectively were investigated using scanning electron microscopy. Both species have a distinctive leg structure bearing specialised cuticular sensory structures. In the study, the sensilla were classified into five basic types: sensilla trichoidea, sensilla basiconidea, sensilla placoidea, porous circular sensilla and sensilla bell mouthed. These sensilla were further differentiated on the basis of shape, size, number, flexibility and type of socket attached. A total of 26 types of sensilla in the legs of these two species were observed. M. haliploides showed 18 types of sensory structures and H. greeni 8 types. A specific morphological structure of the porous circular sensilla was observed and found to be unique.


Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 25
Author(s):  
Torben Stemme ◽  
Sarah E. Pfeffer

Many arachnid taxa have evolved unique, highly specialized sensory structures such as antenniform legs in Amblypygi (whip spiders), for instance, or mesosomal pectines in scorpions. Knowledge of the neuroanatomy as well as functional aspects of these sensory organs is rather scarce, especially in comparison to other arthropod clades. In pseudoscorpions, no special sensory structures have been discovered so far. Nevertheless, these animals possess dominant, multifunctional pedipalps, which are good candidates for being the primary sensory appendages. However, only little is known about the anatomy of the nervous system and the projection pattern of pedipalpal afferents in this taxon. By using immunofluorescent labeling of neuronal structures as well as lipophilic dye labeling of pedipalpal pathways, we identified the arcuate body, as well as a comparatively small mushroom body, the latter showing some similarities to that of Solifugae (sun spiders and camel spiders). Furthermore, afferents from the pedipalps terminate in a glomerular and a layered neuropil. Due to the innervation pattern and structural appearance, we conclude that these neuropils are the first integration centers of the chemosensory and mechanosensory afferents. Within Arthropoda, but also other invertebrates or even vertebrates, sensory structures show rather similar neuronal arrangement. Thus, these similarities in the sensory systems of different evolutionary origin have to be interpreted as functional prerequisites of the respective modality.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1121
Author(s):  
Agnieszka Nowińska ◽  
Jolanta Brożek

This article introduces the results of a study of three families of Nepomorpha and is the last part of a series of studies that sums up our work on the morphologies of the antennal sensory structures in this taxon. The morphologies and distribution of the sensilla in the families Notonectidae, Pleidae and Helotrephidae were studied under a scanning electron microscope. Six main types (sensilla trichodea, chaetica, campaniformia, basiconica, ampullacea and coeloconica) and ten subtypes (five subtypes of sensilla trichodea and five subtypes of sensilla basiconica) were described. The results were compared with other studies on the antennal sensilla of Nepomorpha in order to assess evolutionary changes within the infraorder. With the use of cladistics analysis, the monophyly of the families Nepidae, Micronectidae, Corixidae and Gelastocoridae was supported. On the other hand, the occurrence of some clades forming superfamilies was weakly supported by bootstrap analysis. These results, supported by presence of the numerous autapomorphies, suggest that antennal sensilla evolved within inner groups.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Liu ◽  
Nana Song ◽  
Yufang Wang ◽  
Jerome Walker ◽  
Jerry Yu

AbstractArterial baroreceptors (BRs) play a vital role in the regulation of the cardiopulmonary system. What is known about how these sensors operate at the subcellular level is limited, however. Until recently, one afferent axon was considered to be connected to a single baroreceptor (one-sensor theory). However, in the lung, a single airway mechanosensory unit is now known to house many sensors (multiple-sensor theory). Here we tested the hypothesis that multiple-sensor theory also operates in BR units, using both morphological and electrophysiological approaches in rabbit aortic arch (in whole mount) labeled with Na+/K+-ATPase, as well as myelin basic protein antibodies, and examined microscopically. Sensory structures presented in compact clusters, similar to bunches of grapes. Sensory terminals, like those in the airways, formed leaf-like or knob-like expansions. That is, a single myelinated axon connected with multiple sensors forming a network. We also recorded single-unit activities from aortic baroreceptors in the depressor nerve in anesthetized rabbits and examined the unit response to a bolus intravenous injection of phenylephrine. Unit activity increased progressively as blood pressure (BP) increased. Five of eleven units abruptly changed their discharge pattern to a lower activity level after BP attained a plateau for a minute or two (when BP was maintained at the high level). These findings clearly show that the high discharge baroreceptor deactivates after over-excitation and unit activity falls to a low discharge sensor. In conclusion, our morphological and physiological data support the hypothesis that multiple-sensory theory can be applied to BR units.


2021 ◽  
Vol 15 ◽  
Author(s):  
Giorgio Vallortigara

Animals need to distinguish sensory input caused by their own movement from sensory input which is due to stimuli in the outside world. This can be done by an efference copy mechanism, a carbon copy of the movement-command that is routed to sensory structures. Here I tried to link the mechanism of the efference copy with the idea of the philosopher Thomas Reid that the senses would have a double province, to make us feel, and to make us perceive, and that, as argued by psychologist Nicholas Humphrey, the former would identify with the signals from bodily sense organs with an internalized evaluative response, i.e., with phenomenal consciousness. I discussed a possible departure from the classical implementation of the efference copy mechanism that can effectively provide the senses with such a double province, and possibly allow us some progress in understanding the nature of consciousness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Darya Markevich ◽  
Marcin Walczak ◽  
Oleg Borodin ◽  
Jacek Szwedo ◽  
Jolanta Brożek

AbstractThis study presents the morphology of calcar in adult Delphacidae based on representatives of the genera Ugyops Guérin-Meneville, 1834, Notuchus Fennah, 1969 (Ugyopini), Asiraca Latreille, 1798 (Asiracini), Kelisia Fieber, 1866, (Kelisini), Stenocranus Fieber, 1866 (Stenocranini), Chloriona Fieber, 1866, Megadelphax Wagner, 1963, Muellerianella Wagner, 1963, Javesella Fennah, 1963, Conomelus Fieber, 1866, Euconomelus Haupt, 1929, Hyledelphax Vilbaste, 1968, Stiroma Fieber, 1866, Struebingianella Wagner, 1963 and Xanthodelphax Wagner, 1963 (Delphacini). We used SEM electron microscopy, to define seven types of calcar structure (Types 1, 2, 5, 6, 7, 8, and 9) based on combinations of characters including shape, number of teeth and differentiation of sensory structures in species from fifteen genera. Additionally, two other types (Types 3 and 4) were determined based on the calcar descriptions from previous studies. Similarities and differences in calcar structure and function were discussed and emerging relationships between planthopper species and their particular habitats were indicated.


2021 ◽  
pp. 1-7
Author(s):  
Scheherazade Le ◽  
Viet Nguyen ◽  
Leslie Lee ◽  
S. Charles Cho ◽  
Carmen Malvestio ◽  
...  

OBJECTIVE Brainstem cavernous malformations (CMs) often require resection due to their aggressive natural history causing hemorrhage and progressive neurological deficits. The authors report a novel intraoperative neuromonitoring technique of direct brainstem somatosensory evoked potentials (SSEPs) for functional mapping intended to help guide surgery and subsequently prevent and minimize postoperative sensory deficits. METHODS Between 2013 and 2019 at the Stanford University Hospital, intraoperative direct brainstem stimulation of primary somatosensory pathways was attempted in 11 patients with CMs. Stimulation identified nucleus fasciculus, nucleus cuneatus, medial lemniscus, or safe corridors for incisions. SSEPs were recorded from standard scalp subdermal electrodes. Stimulation intensities required to evoke potentials ranged from 0.3 to 3.0 mA or V. RESULTS There were a total of 1 midbrain, 6 pontine, and 4 medullary CMs—all with surrounding hemorrhage. In 7/11 cases, brainstem SSEPs were recorded and reproducible. In cases 1 and 11, peripheral median nerve and posterior tibial nerve stimulations did not produce reliable SSEPs but direct brainstem stimulation did. In 4/11 cases, stimulation around the areas of hemosiderin did not evoke reliable SSEPs. The direct brainstem SSEP technique allowed the surgeon to find safe corridors to incise the brainstem and resect the lesions. CONCLUSIONS Direct stimulation of brainstem sensory structures with successful recording of scalp SSEPs is feasible at low stimulation intensities. This innovative technique can help the neurosurgeon clarify distorted anatomy, identify safer incision sites from which to evacuate clots and CMs, and may help reduce postoperative neurological deficits. The technique needs further refinement, but could potentially be useful to map other brainstem lesions.


2021 ◽  
Vol 10 (19) ◽  
pp. 4609
Author(s):  
Yolanda García-Mesa ◽  
Jorge Feito ◽  
Mario González-Gay ◽  
Irene Martínez ◽  
Jorge García-Piqueras ◽  
...  

Distal diabetic sensorimotor polyneuropathy (DDSP) is the most prevalent form of diabetic neuropathy, and some of the patients develop gradual pain. Specialized sensory structures present in the skin encode different modalities of somatosensitivity such as temperature, touch, and pain. The cutaneous sensory structures responsible for the qualities of mechanosensitivity (fine touch, vibration) are collectively known as cutaneous mechanoreceptors (Meissner corpuscles, Pacinian corpuscles, and Merkel cell–axonal complexes), which results are altered during diabetes. Here, we used immunohistochemistry to analyze the density, localization within the dermis, arrangement of corpuscular components (axons and Schwann-like cells), and expression of putative mechanoproteins (PIEZO2, ASIC2, and TRPV4) in cutaneous mechanoreceptors of subjects suffering clinically diagnosed non-painful and painful distal diabetic sensorimotor polyneuropathy. The number of Meissner corpuscles, Pacinian corpuscles, and Merkel cells was found to be severely decreased in the non-painful presentation of the disease, and almost disappeared in the painful presentation. Furthermore, there was a marked reduction in the expression of axonal and Schwann-like cell markers (with are characteristics of corpuscular denervation) as well as of all investigated mechanoproteins in the non-painful distal diabetic sensorimotor polyneuropathy, and these were absent in the painful form. Taken together, these alterations might explain, at least partly, the impairment of mechanosensitivity system associated with distal diabetic sensorimotor polyneuropathy. Furthermore, our results support that an increasing severity of DDSP may increase the risk of developing painful neuropathic symptoms. However, why the absence of cutaneous mechanoreceptors is associated with pain remains to be elucidated.


2021 ◽  
pp. 1-4
Author(s):  
Aarón Torres‐Martínez ◽  
Arlette Hernández‐Franyutti ◽  
Meritxell Sanlúcar‐González ◽  
Wilfrido M. Contreras‐Sánchez

Sign in / Sign up

Export Citation Format

Share Document