scholarly journals p53 responsive nucleotide excision repair gene products p48 and XPC, but not p53, localize to sites of UV-irradiation-induced DNA damage, in vivo

2003 ◽  
Vol 24 (5) ◽  
pp. 843-850 ◽  
Author(s):  
M. E. Fitch
2017 ◽  
Vol 38 (10) ◽  
pp. 976-985 ◽  
Author(s):  
Chunhua Han ◽  
Ran Zhao ◽  
John Kroger ◽  
Jinshan He ◽  
Gulzar Wani ◽  
...  

Abstract Subunit 2 of DNA damage-binding protein complex (DDB2) is an early sensor of nucleotide excision repair (NER) pathway for eliminating DNA damage induced by UV radiation (UVR) and cisplatin treatments of mammalian cells. DDB2 is modified by ubiquitin and poly(ADP-ribose) (PAR) in response to UVR, and these modifications play a crucial role in regulating NER. Here, using immuno-analysis of irradiated cell extracts, we have identified multiple post-irradiation modifications of DDB2 protein. Interestingly, although the DNA lesions induced by both UVR and cisplatin are corrected by NER, only the UV irradiation, but not the cisplatin treatment, induces any discernable DDB2 modifications. We, for the first time, show that the appearance of UVR-induced DDB2 modifications depend on the binding of DDB2 to the damaged chromatin and the participation of functionally active 26S proteasome. The in vitro and in vivo analysis revealed that SUMO-1 conjugations comprise a significant portion of these UVR-induced DDB2 modifications. Mapping of SUMO-modified sites demonstrated that UVR-induced SUMOylation occurs on Lys-309 residue of DDB2 protein. Mutation of Lys-309 to Arg-309 diminished the DDB2 SUMOylation observable both in vitro and in vivo. Moreover, K309R mutated DDB2 lost its function of recruiting XPC to the DNA damage sites, as well as the ability to repair cyclobutane pyrimidine dimers following cellular UV irradiation. Taken together, our results indicate that DDB2 is modified by SUMOylation upon UV irradiation, and this post-translational modification plays an important role in the initial recognition and processing of UVR-induced DNA damage occurring within the context of chromatin.


DNA Repair ◽  
2003 ◽  
Vol 2 (7) ◽  
pp. 819-826 ◽  
Author(s):  
Maureen E. Fitch ◽  
Irina V. Cross ◽  
Stephanie J. Turner ◽  
Shanthi Adimoolam ◽  
Cindy X. Lin ◽  
...  

2000 ◽  
Vol 21 (6) ◽  
pp. 1263-1265 ◽  
Author(s):  
Fumio Ide ◽  
Naoko Iida ◽  
Yoko Nakatsuru ◽  
Hideaki Oda ◽  
Kiyoji Tanaka ◽  
...  

2000 ◽  
Vol 21 (6) ◽  
pp. 1263-1265 ◽  
Author(s):  
Fumio Ide ◽  
Naoko Iida ◽  
Yoko Nakatsuru ◽  
Hideaki Oda ◽  
Kiyoji Tanaka ◽  
...  

2004 ◽  
Vol 24 (3) ◽  
pp. 1200-1205 ◽  
Author(s):  
Ming Tian ◽  
Reiko Shinkura ◽  
Nobuhiko Shinkura ◽  
Frederick W. Alt

ABSTRACT Xeroderma pigmentosum (XP) is a human genetic disease which is caused by defects in nucleotide excision repair. Since this repair pathway is responsible for removing UV irradiation-induced damage to DNA, XP patients are hypersensitive to sunlight and are prone to develop skin cancer. Based on the underlying genetic defect, the disease can be divided into the seven complementation groups XPA through XPG. XPF, in association with ERCC1, constitutes a structure-specific endonuclease that makes an incision 5′ to the photodamage. XPF-ERCC1 has also been implicated in both removal of interstrand DNA cross-links and homology-mediated recombination and in immunoglobulin class switch recombination (CSR). To study the function of XPF in vivo, we inactivated the XPF gene in mice. XPF-deficient mice showed a severe postnatal growth defect and died approximately 3 weeks after birth. Histological examination revealed that the liver of mutant animals contained abnormal cells with enlarged nuclei. Furthermore, embryonic fibroblasts defective in XPF are hypersensitive to UV irradiation and mitomycin C treatment. No defect in CSR was detected, suggesting that the nuclease is dispensable for this recombination process. These phenotypes are identical to those exhibited by the ERCC1-deficient mice, consistent with the functional association of the two proteins. The complex phenotype suggests that XPF-ERCC1 is involved in multiple DNA repair processes.


Sign in / Sign up

Export Citation Format

Share Document