scholarly journals IRS-2 Deficiency Impairs NMDA Receptor-Dependent Long-term Potentiation

2011 ◽  
Vol 22 (8) ◽  
pp. 1717-1727 ◽  
Author(s):  
Eduardo D. Martín ◽  
Ana Sánchez-Perez ◽  
José Luis Trejo ◽  
Juan Antonio Martin-Aldana ◽  
Marife Cano Jaimez ◽  
...  
2005 ◽  
Vol 565 (2) ◽  
pp. 579-591 ◽  
Author(s):  
Franco A. Taverna ◽  
John Georgiou ◽  
Robert J. McDonald ◽  
Nancy S. Hong ◽  
Alexander Kraev ◽  
...  

1990 ◽  
Vol 63 (5) ◽  
pp. 1148-1168 ◽  
Author(s):  
W. R. Holmes ◽  
W. B. Levy

1. Because induction of associative long-term potentiation (LTP) in the dentate gyrus is thought to depend on Ca2+ influx through channels controlled by N-methyl-D-aspartate (NMDA) receptors, quantitative modeling was performed of synaptically mediated Ca2+ influx as a function of synaptic coactivation. The goal was to determine whether Ca2+ influx through NMDA-receptor channels was, by itself, sufficient to explain associative LTP, including control experiments and the temporal requirements of LTP. 2. Ca2+ influx through NMDA-receptor channels was modeled at a synapse on a dendritic spine of a reconstructed hippocampal dentate granule cell when 1-115 synapses on spines at different dendritic locations were activated eight times at frequencies of 10-800 Hz. The resulting change in [Ca2+] in the spine head was estimated from the Ca2+ influx with the use of a model of a dendritic spine that included Ca2+ buffers, pumps, and diffusion. 3. To use a compelling model of synaptic activation, we developed quantitative descriptions of the NMDA and non-NMDA receptor-mediated conductances consistent with available experimental data. The experimental data reported for NMDA and non-NMDA receptor-channel properties and data from other non-LTP experiments that separated the NMDA and non-NMDA receptor-mediated components of synaptic events proved to be limiting for particular synaptic variables. Relative to the non-NMDA glutamate-type receptors, 1) the unbinding of transmitter from NMDA receptors had to be slow, 2) the transition from the bound NMDA receptor-transmitter complex to the open channel state had to be even slower, and 3) the average number of NMDA-receptor channels at a single activated synapse on a single spine head that were open and conducting at a given moment in time had to be very small (usually less than 1). 4. With the use of these quantitative synaptic conductance descriptions. Ca2+ influx through NMDA-receptor channels at a synapse was computed for a variety of conditions. For a constant number of pulses, Ca2+ influx was calculated as a function of input frequency and the number of coactivated synapses. When few synapses were coactivated, Ca2+ influx was small, even for high-frequency activation. However, with larger numbers of coactivated synapses, there was a steep increase in Ca2+ influx with increasing input frequency because of the voltage-dependent nature of the NMDA receptor-mediated conductance. Nevertheless, total Ca2+ influx was never increased more than fourfold by increasing input frequency or the number of coactivated synapses.(ABSTRACT TRUNCATED AT 400 WORDS)


2003 ◽  
Vol 23 (34) ◽  
pp. 10791-10799 ◽  
Author(s):  
Georg Köhr ◽  
Vidar Jensen ◽  
Helmut J. Koester ◽  
Andre L. A. Mihaljevic ◽  
Jo K. Utvik ◽  
...  

1991 ◽  
Vol 3 (9) ◽  
pp. 850-854 ◽  
Author(s):  
N. Berretta ◽  
F. Berton ◽  
R. Bianchi ◽  
M. Brunelli ◽  
M. Capogna ◽  
...  

2020 ◽  
Vol 13 (3) ◽  
pp. 530-532
Author(s):  
Joshua C. Brown ◽  
William H. DeVries ◽  
Jeffrey E. Korte ◽  
Gregory L. Sahlem ◽  
Leonardo Bonilha ◽  
...  

2020 ◽  
Vol 4 ◽  
pp. 239821282095784
Author(s):  
Heather Kang ◽  
Pojeong Park ◽  
Muchun Han ◽  
Patrick Tidball ◽  
John Georgiou ◽  
...  

The ketamine metabolite (2 R,6 R)-hydroxynorketamine has been proposed to have rapid and persistent antidepressant actions in rodents, but its mechanism of action is controversial. We have compared the ability of ( R,S)-ketamine with the (2 S,6 S)- and (2 R,6 R)-isomers of hydroxynorketamine to affect the induction of N-methyl-d-aspartate receptor–dependent long-term potentiation in the mouse hippocampus. Following pre-incubation of these compounds, we observed a concentration-dependent (1–10 μM) inhibition of long-term potentiation by ketamine and a similar effect of (2 S,6 S)-hydroxynorketamine. At a concentration of 10 μM, (2 R,6 R)-hydroxynorketamine also inhibited the induction of long-term potentiation. These findings raise the possibility that inhibition of N-methyl-d-aspartate receptor–mediated synaptic plasticity is a site of action of the hydroxynorketamine metabolites with respect to their rapid and long-lasting antidepressant-like effects.


Sign in / Sign up

Export Citation Format

Share Document