scholarly journals Tracking Training-Related Plasticity by Combining fMRI and DTI: The Right Hemisphere Ventral Stream Mediates Musical Syntax Processing

2017 ◽  
Vol 28 (4) ◽  
pp. 1209-1218 ◽  
Author(s):  
Mathias S Oechslin ◽  
Markus Gschwind ◽  
Clara E James
2018 ◽  
Vol 24 (10) ◽  
pp. 1121-1124 ◽  
Author(s):  
Aleksandra Mańkowska ◽  
Kenneth M. Heilman ◽  
John B. Williamson ◽  
Michał Harciarek

AbstractObjectives: Healthy individuals often have a leftward and upward attentional spatial bias; however, there is a reduction of this leftward bias with aging. The right hemisphere mediates leftward spatial attention and age-related reduction of right hemispheric activity may account for this reduced leftward bias. The right hemisphere also appears to be responsible for upward bias, and this upward bias might reduce with aging. Alternatively, whereas the dorsal visual stream allocates attention downward, the ventral stream allocates attention upward. Since with aging there is a greater atrophy of the dorsal than ventral stream, older participants may reveal a greater upward bias. The main purpose of this study was to learn if aging influences the vertical allocation of spatial attention. Methods: Twenty-six young (17 males; mean age 44.62±2.57 years) and 25 healthy elderly (13 males; mean age 72.04±.98 years), right-handed adults performed line bisections using 24 vertical lines (24 cm long and 2 mm thick) aligned with their midsagittal plane. Results: Older adults had a significantly greater upward bias than did younger adults. Conclusions: Normal upward attentional bias increases with aging, possibly due to an age-related reduction of the dorsal attentional stream that is responsible for the allocation of downward attention. (JINS, 2018, 24, 1121–1124)


2021 ◽  
Vol 11 (8) ◽  
pp. 1063
Author(s):  
Kelly Cotosck ◽  
Jed Meltzer ◽  
Mariana Nucci ◽  
Katerina Lukasova ◽  
Letícia Mansur ◽  
...  

Functional neuroimaging studies have highlighted the roles of three networks in processing language, all of which are typically left-lateralized: a ventral stream involved in semantics, a dorsal stream involved in phonology and speech production, and a more dorsal “multiple demand” network involved in many effortful tasks. As lateralization in all networks may be affected by life factors such as age, literacy, education, and brain pathology, we sought to develop a task paradigm with which to investigate the engagement of these networks, including manipulations to selectively emphasize semantic and phonological processing within a single task performable by almost anyone regardless of literacy status. In young healthy participants, we administered an auditory word monitoring task, in which participants had to note the occurrence of a target word within a continuous story presented in either their native language, Portuguese, or the unknown language, Japanese. Native language task performance activated ventral stream language networks, left lateralized but bilateral in the anterior temporal lobe. Unfamiliar language performance, being more difficult, activated left hemisphere dorsal stream structures and the multiple demand network bilaterally, but predominantly in the right hemisphere. These findings suggest that increased demands on phonological processing to accomplish word monitoring in the absence of semantic support may result in the bilateral recruitment of networks involved in speech perception under more challenging conditions.


2007 ◽  
Vol 97 (3) ◽  
pp. 2410-2422 ◽  
Author(s):  
G. Króliczak ◽  
C. Cavina-Pratesi ◽  
D. A. Goodman ◽  
J. C. Culham

Given that studying neural bases of actions is very challenging with fMRI, numerous experiments have used pantomimed actions as a proxy to studying neural circuits of real actions. However, the underlying assumption that the same neural mechanisms mediate real and pantomimed actions has never been directly tested. Moreover, the assumption is called into question by neuropsychological evidence suggesting that real actions depend on the dorsal stream of visual processing whereas pretend actions also recruit the ventral stream. Here, we directly tested these ideas in neurologically intact subjects. Ten right-handed participants performed four tasks: 1) grasping real three-dimensional objects, 2) reaching toward the objects and touching them with the knuckle without hand preshaping, 3) pantomimed grasping in an adjacent location where no object was present, and 4) pantomimed reaching toward an adjacent location. As expected, in the anterior intraparietal area, there was significantly higher activation during real grasping than that during real reaching. However, the activation difference between pantomimed grasping and pantomimed reaching did not reach statistical significance. There was also no effect of pantomimed grasping within the ventral stream, including an object-selective area in the lateral occipital cortex. Instead, we found that pantomimed grasping was mediated by right-hemisphere activation, particularly the right parietal cortex. These results suggest that areas typically invoked by real actions may not necessarily be driven by “fake” actions. Moreover, pantomimed grasping may not tap object-related areas within the ventral stream, but rather may rely on mechanisms within the right hemisphere that are recruited by artificial and less practiced actions.


2013 ◽  
Vol 27 (3) ◽  
pp. 142-148 ◽  
Author(s):  
Konstantinos Trochidis ◽  
Emmanuel Bigand

The combined interactions of mode and tempo on emotional responses to music were investigated using both self-reports and electroencephalogram (EEG) activity. A musical excerpt was performed in three different modes and tempi. Participants rated the emotional content of the resulting nine stimuli and their EEG activity was recorded. Musical modes influence the valence of emotion with major mode being evaluated happier and more serene, than minor and locrian modes. In EEG frontal activity, major mode was associated with an increased alpha activation in the left hemisphere compared to minor and locrian modes, which, in turn, induced increased activation in the right hemisphere. The tempo modulates the arousal value of emotion with faster tempi associated with stronger feeling of happiness and anger and this effect is associated in EEG with an increase of frontal activation in the left hemisphere. By contrast, slow tempo induced decreased frontal activation in the left hemisphere. Some interactive effects were found between mode and tempo: An increase of tempo modulated the emotion differently depending on the mode of the piece.


Author(s):  
Gregor Volberg

Previous studies often revealed a right-hemisphere specialization for processing the global level of compound visual stimuli. Here we explore whether a similar specialization exists for the detection of intersected contours defined by a chain of local elements. Subjects were presented with arrays of randomly oriented Gabor patches that could contain a global path of collinearly arranged elements in the left or in the right visual hemifield. As expected, the detection accuracy was higher for contours presented to the left visual field/right hemisphere. This difference was absent in two control conditions where the smoothness of the contour was decreased. The results demonstrate that the contour detection, often considered to be driven by lateral coactivation in primary visual cortex, relies on higher-level visual representations that differ between the hemispheres. Furthermore, because contour and non-contour stimuli had the same spatial frequency spectra, the results challenge the view that the right-hemisphere advantage in global processing depends on a specialization for processing low spatial frequencies.


1990 ◽  
Vol 35 (6) ◽  
pp. 544-547
Author(s):  
Randi C. Martin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document