Age-Related Changes in the Allocation of Vertical Attention

2018 ◽  
Vol 24 (10) ◽  
pp. 1121-1124 ◽  
Author(s):  
Aleksandra Mańkowska ◽  
Kenneth M. Heilman ◽  
John B. Williamson ◽  
Michał Harciarek

AbstractObjectives: Healthy individuals often have a leftward and upward attentional spatial bias; however, there is a reduction of this leftward bias with aging. The right hemisphere mediates leftward spatial attention and age-related reduction of right hemispheric activity may account for this reduced leftward bias. The right hemisphere also appears to be responsible for upward bias, and this upward bias might reduce with aging. Alternatively, whereas the dorsal visual stream allocates attention downward, the ventral stream allocates attention upward. Since with aging there is a greater atrophy of the dorsal than ventral stream, older participants may reveal a greater upward bias. The main purpose of this study was to learn if aging influences the vertical allocation of spatial attention. Methods: Twenty-six young (17 males; mean age 44.62±2.57 years) and 25 healthy elderly (13 males; mean age 72.04±.98 years), right-handed adults performed line bisections using 24 vertical lines (24 cm long and 2 mm thick) aligned with their midsagittal plane. Results: Older adults had a significantly greater upward bias than did younger adults. Conclusions: Normal upward attentional bias increases with aging, possibly due to an age-related reduction of the dorsal attentional stream that is responsible for the allocation of downward attention. (JINS, 2018, 24, 1121–1124)

2019 ◽  
Vol 25 (10) ◽  
pp. 1044-1050
Author(s):  
John B. Williamson ◽  
Aidan Murphy ◽  
Damon G. Lamb ◽  
Zared Schwartz ◽  
Dana Szeles ◽  
...  

AbstractObjectives:Healthy young adults often demonstrate a leftward spatial bias called “pseudoneglect” which often diminishes with aging. One hypothesis for this phenomenon is an age-related deterioration in right hemisphere functions (right hemi-aging). If true, then a greater rightward bias should be evident on all spatial attention tasks regardless of content. Another hypothesis is a decrease in asymmetrical hemispheric activation with age (HAROLD). If true, older participants may show reduced bias in all spatial tasks, regardless of leftward or rightward biasing of specific spatial content.Methods:Seventy right-handed healthy participants, 33 younger (21–40) and 37 older (60–78), were asked to bisect solid and character-letter lines as well as to perform left and right trisections of solid lines.Results:Both groups deviated toward the left on solid line bisections and left trisections. Both groups deviated toward the right on right trisections and character line bisections. In all tasks, the older participants were more accurate than the younger participants.Conclusions:The finding that older participants were more accurate than younger participants across all bisection and trisection conditions suggests a decrease in the asymmetrical hemispheric activation of these specialized networks important in the allocation of contralateral spatial attention or spatial action intention.


2002 ◽  
Vol 13 (01) ◽  
pp. 001-013 ◽  
Author(s):  
James Jerger ◽  
Rebecca Estes

We studied auditory evoked responses to the apparent movement of a burst of noise in the horizontal plane. Event-related potentials (ERPs) were measured in three groups of participants: children in the age range from 9 to 12 years, young adults in the age range from 18 to 34 years, and seniors in the age range from 65 to 80 years. The topographic distribution of grand-averaged ERP activity was substantially greater over the right hemisphere in children and seniors but slightly greater over the left hemisphere in young adults. This finding may be related to age-related differences in the extent to which judgments of sound movement are based on displacement versus velocity information.


2020 ◽  
pp. 14-18
Author(s):  
Татьяна Александровна Цехмистренко ◽  
Аслан Батразович Мазлоев ◽  
Дмитрий Константинович Обухов

Цель - изучение возрастных изменений толщины коры и ее слоев в парамедианной дольке мозжечка у детей. Материал и методы. Работа выполнена на постмортальном материале (62 мозжечка), полученном от детей в возрасте от рождения до 12 лет, умерших в результате травм без повреждений головного мозга. С помощью компьютерной морфометрии на окрашенных методом Ниссля фронтальных гистологических срезах коры, взятой билатерально в области парамедианной (тонкой) дольки (HVIIB) на вершине листков мозжечка, измеряли толщину коры, а также толщину ее молекулярного и зернистого слоев. Анализ количественных данных проводили в годовых интервалах. Результаты. В парамедианной дольке мозжечка увеличение толщины коры происходит в четыре этапа: в правом полушарии - от рождения к 1, 3, 5 и 9 годам, в левом полушарии - к 1, 5, 7 и 9 годам. Левосторонняя асимметрия толщины коры мозжечка отмечается у детей 1 и 2 лет, толщины молекулярного слоя - у детей 3 лет жизни. Правосторонняя асимметрия характерна для толщины зернистого слоя у детей 3 лет и поперечника коры, в целом, у детей 6 лет. Толщина коры и слоев в области парамедианной дольки мозжечка по среднегрупповым показателям достигает уровня взрослых людей к 9 годам. Выводы. Толщина коры мозжечка и ее слоев в области дольки H VII B увеличивается гетерохронно и гетеродинамически в правом и левом полушариях мозжечка у детей на первом году жизни, а также в периоды раннего, первого и второго детства. Уменьшения поперечника коры и слоев в парамедианной дольке мозжечка у детей от рождения до 12 лет не обнаружено. Objective - to study the age-related changes in the thickness of the cortex and its layers in the paramedian lobule of the cerebellum in children. Material and methods. The work was performed on postmortem material (62 cerebellums) obtained from children aged from birth to 12 years who died from injuries but without brain damage. The thickness of the cortex, as well as the thickness of its molecular and granular layers, were measured using computer morphometry on the Nissl-stained frontal histological sections of the cortex taken bilaterally in the region of the paramedian (gracile) lobule (HVIIB) at the top of the folia of cerebellum. Analysis of quantitative data was performed at annual intervals. Results. In the paramedian lobule of the cerebellum, the increase in the thickness of the cortex occured in four stages: in the right hemisphere - from birth to 1, 3, 5 and 9 years, in the left hemisphere - to 1, 5, 7 and 9 years. Left-sided asymmetry of the cortical thickness of the cerebellum was observed in 1 and 2-year old children, the thickness of the molecular layer - in 3-year old children. Right-sided asymmetry was characteristic for the thickness of the granular layer in 3-year old children and a cross-section of the cortex in 6-year old children. The thickness of the cortex and layers in the area of the paramedian lobule of the cerebellum on the average group indicators reached the level of adults by 9 years. Conclusions. The thickness of the cerebellar cortex and its layers in the area of the lobule HVIIB increased heterochronically and heterogeneously in the right and left hemispheres of the cerebellum in children of the first year of life, and in the periods of early, first and second childhood. No reduction in the diameter of the cortex and layers in the paramedian lobule of the cerebellum of children from birth to 12 years was found.


2004 ◽  
Vol 16 (8) ◽  
pp. 1363-1374 ◽  
Author(s):  
Teresa V. Mitchell ◽  
Helen J. Neville

Recent reports have documented greater plasticity in the dorsal visual stream as compared with the ventral visual stream. This study sought to test the hypothesis that this greater plasticity may be related to a more protracted period of development in the dorsal as compared with the ventral stream. Age-related effects on event-related potentials (ERPs) elicited by motion and color stimuli, designed to activate the two visual streams, were assessed in healthy individuals aged 6 years through adulthood. Although significant developmental effects were observed in amplitudes of ERPs to both color and motion stimuli, marked latency effects were observed only in response to motion. These results provide support for the hypothesis that the dorsal stream displays a longer developmental time course across the early school years than the ventral stream. Implications for neural and behavioral plasticity are discussed.


2005 ◽  
Vol 25 (9) ◽  
pp. 1197-1208 ◽  
Author(s):  
Agnes Flöel ◽  
Andreas Jansen ◽  
Michael Deppe ◽  
Martin Kanowski ◽  
Carsten Konrad ◽  
...  

The right hemisphere is predominantly involved in tasks associated with spatial attention. However, left hemispheric dominance for spatial attention can be found in healthy individuals, and both spatial attention and language can be lateralized to the same hemisphere. Little is known about the underlying regional distribution of neural activation in these ‘atypical’ individuals. Previously a large number of healthy subjects were screened for hemispheric dominance of visuospatial attention and language, using functional Doppler ultrasonography. From this group, subjects were chosen who were ‘atypical’ for hemispheric dominance of visuospatial attention and language, and their pattern of brain activation was studied with functional magnetic resonance imaging during a task probing spatial attention. Right-handed subjects with the ‘typical’ pattern of brain organization served as control subjects. It was found that subjects with an inverted lateralization of language and spatial attention (language right, attention left) recruited left-hemispheric areas in the attention task, homotopic to those recruited by control subjects in the right hemisphere. Subjects with lateralization of both language and attention to the right hemisphere activated an attentional network in the right hemisphere that was comparable to control subjects. The present findings suggest that not the hemispheric side, but the intrahemispheric pattern of activation is the distinct feature for the neural processes underlying language and attention.


2019 ◽  
Author(s):  
Charlotte E. E. Wiltshire ◽  
Kate E. Watkins

AbstractBackgroundTDCS modulates cortical excitability in a polarity-specific way. When used in combination with a behavioural task, it can also alter performance. Previously, tDCS modulated the performance of older adults on a complex speech motor learning task, which involved repetition of tongue twisters [1].ObjectiveWe aimed to replicate this finding in healthy young participants and to extend it by measuring tDCS-induced changes in motor excitability using transcranial magnetic stimulation and motor-evoked potentials elicited in the lips.MethodIn a double-blind randomized sham-controlled study, three groups of 20 participants received: 1) anodal tDCS to the left IFG/LipM1 and cathodal tDCS to the right hemisphere homologue; or 2) cathodal tDCS over the left and anodal over the right; or 3) sham stimulation. Participants heard and repeated tongue twisters and matched simple sentences before, during and 10 minutes after the stimulation. Motor excitability was measured before and immediately after the tDCS.ResultsThe improvement in performance of tongue twister repetition from baseline to after stimulation was significantly greater than for the simple sentences but did not differ among the three groups. Motor excitability significantly decreased to a small but similar extent across the three groups.ConclusionsTDCS did not modulate performance on a complex articulation task in healthy young adults. TDCS applied concurrently with task learning also failed to modulate motor excitability in expected ways. TDCS may be most effective in brains where brain function is sub-optimal due to age-related declines or pathology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Federica Somma ◽  
Paolo Bartolomeo ◽  
Federica Vallone ◽  
Antonietta Argiuolo ◽  
Antonio Cerrato ◽  
...  

BackgroundThe measures taken to contain the coronavirus disease 2019 (COVID-19) pandemic, such as the lockdown in Italy, do impact psychological health; yet, less is known about their effect on cognitive functioning. The transactional theory of stress predicts reciprocal influences between perceived stress and cognitive performance. However, the effects of a period of stress due to social isolation on spatial cognition and exploration have been little examined. The aim of the present study was to investigate the possible effects and impact of the COVID-19 pandemic on spatial cognition tasks, particularly those concerning spatial exploration, and the physiological leftward bias known as pseudoneglect. A right-hemisphere asymmetry for spatial attention processes crucially contributes to pseudoneglect. Other evidence indicates a predominantly right-hemisphere activity in stressful situations. We also analyzed the effects of lockdown on coping strategies, which typically show an opposite pattern of hemispheric asymmetry, favoring the left hemisphere. If so, then pseudoneglect should increase during the lockdown and be negatively correlated with the efficacy of coping strategies.MethodsOne week before the start of the lockdown due to COVID-19 in Italy (T1), we had collected data from a battery of behavioral tests including tasks of peri-personal spatial cognition. During the quarantine period, from late April to early May 2020 (T2), we repeated the testing sessions with a subgroup of the same participants (47 right-handed students, mean age = 20, SD = 1.33). At both testing sessions, participants performed digitized neuropsychological tests, including a Cancellation task, Radial Arm Maze task, and Raven’s Advanced Progressive Matrices. Participants also completed a newly developed COVID-19 Student Stress Scale, based on transactional models of stress, and the Coping Orientation to Problems Experienced—New Italian Version (COPE-NIV) to assess coping orientation.ResultsThe tendency to start cancelation from a left-sided item, to explore first a left-sided arm of the maze, and to choose erroneous response items on the left side of the page on Raven’s matrices increased from T1 to T2. The degree of pseudoneglect increment positively correlated with perceived stress and negatively correlated with Positive Attitude and Problem-Solving COPE-NIV subscales.ConclusionLockdown-related stress may have contributed to increase leftward bias during quarantine through a greater activation of the right hemisphere. On the other hand, pseudoneglect was decreased for better coping participants, perhaps as a consequence of a more balanced hemispheric activity in these individuals.


2019 ◽  
Vol 7 (4) ◽  
pp. 88-93
Author(s):  
T. A. Tsekhmistrenko ◽  
S. V. Klochkova ◽  
A. B. Mazloev ◽  
D. B. Nikityuk ◽  
D. K. Obukhov

Objective– the study of age-related changes in the thickness of the cortex and its layers in the posterior lobe of the cerebellum of children.Material and methods.The work is performed on postmortem material (62 cerebellum), obtained from children aged from birth to 12 years who died as a result of injuries without brain damage. Using computer morphometry on the painted method Nissle frontal histological sections of cortex, taken in region right and left posterior quadrangular lobules (H VI) on top of the folia of cerebellum, was measured the cortical thickness and the thickness of molecular and granular layers. Analysis of quantitative data was performed at annual intervals.Results. The posterior lobe of the cerebellum the increase in the thickness of the cortex in the left hemisphere occurs in two stages: from birth to 1 year and then to 2 years, in the right hemisphere in three stages: from birth to 1 year, and 2 and 7 years. Right-sided asymmetry of the thickness of the cerebellar cortex observed in infants and children 7 years of age, thickness of granular layer in infants and children 9 years. Left-hand asymmetry is specific to cortical thickness and its molecular layer in children 12 months.Conclusion. The thickness of the cerebellar cortex and its layers in the area of the lobule H VI increases during early childhood, and in the right hemisphere also during the first childhood. Reducing the diameter of the cortex and layer in the posterior lobe of the cerebellum of children from birth to 12 years of age are not detected.


2019 ◽  
Vol 34 (3) ◽  
pp. 315-325 ◽  
Author(s):  
Sandro Franceschini ◽  
Matteo Lulli ◽  
Sara Bertoni ◽  
Simone Gori ◽  
Alessandro Angrilli ◽  
...  

Background: Reading is a unique human skill. Several brain networks involved in this complex skill mainly involve the left hemisphere language areas. Nevertheless, nonlinguistic networks found in the right hemisphere also seem to be involved in sentence and text reading. These areas do not deal with phonological information, but are involved in verbal and nonverbal pattern information processing. The right hemisphere is responsible for global processing of a scene, which is needed for developing reading skills. Aims: Caffeine seems to affect global pattern processing specifically. Consequently, our aim was to discover if it could enhance text reading skill. Methods: In two mechanistic studies ( n=24 and n=53), we tested several reading skills, global and local perception, alerting, spatial attention and executive functions, as well as rapid automatised naming and phonological memory, using a double-blind, within-subjects, repeated-measures design in typical young adult readers. Results: A single dose of 200 mg caffeine improved global processing, without any effect on local information processing, alerting, spatial attention and executive or phonological functions. This improvement in global processing was accompanied by faster text reading speed of meaningful sentences, whereas single word/pseudoword or pseudoword text reading abilities were not affected. These effects of caffeine on reading ability were enhanced by mild sleep deprivation. Conclusions: These findings show that a small quantity of caffeine could improve global processing and text reading skills in adults.


Sign in / Sign up

Export Citation Format

Share Document