Calculation of Flame Ionization Detector Relative Response Factors Using the Effective Carbon Number Concept

1985 ◽  
Vol 23 (8) ◽  
pp. 333-340 ◽  
Author(s):  
J. T. Scanlon ◽  
D. E. Willis
Author(s):  
Judit Mátyási ◽  
Dorottya Zverger ◽  
Blanka Gaál ◽  
József Balla

Since its introduction in 1957 the Flame Ionization Detector (FID) is the most widely used Gas Chromatographic (GC) detector. Nowadays there is no Gas Chromatographic laboratory without apparatus containing a Flame Ionization Detector. However, the operation mechanism of the hydrogen flame and signal production is still not completely obvious. The FID response for hydrocarbons is proportional to the carbon content of the compound, while substances that contain heteroatoms yield smaller responses. In the Gas Chromatographic practice, a special relative response factor called Effective Carbon Number (ECN) is used for the expression of the response for molecules containing heteroatom. In the literature there are signal modifying constants published by different authors, which are typical of the carbon atoms and heteroatoms in the different chemical bonds. Although these constants express the nature of the modification (increase or decrease) the exact modifying value always depends on the chromatographic parameters and the molecular structure. If we want to apply the ECN method for our calculations these constants should be determined for our specific Gas Chromatographic system. In our earlier study we investigated the effect of the temperature of the injector, column and detector, the mode of the injection and the concentration level of the substance. The aim of this paper is to investigate the effect of the linear velocity on the response of the Flame Ionization Detector as a mass flow rate sensitive detector in the case of capillary column.


2012 ◽  
Vol 5 (8) ◽  
pp. 1911-1923 ◽  
Author(s):  
C. L. Faiola ◽  
M. H. Erickson ◽  
V. L. Fricaud ◽  
B. T. Jobson ◽  
T. M. VanReken

Abstract. Biogenic volatile organic compounds (BVOCs) are emitted into the atmosphere by plants and include isoprene, monoterpenes, sesquiterpenes, and their oxygenated derivatives. These BVOCs are among the principal factors influencing the oxidative capacity of the atmosphere in forested regions. BVOC emission rates are often measured by collecting samples onto adsorptive cartridges in the field and then transporting these samples to the laboratory for chromatographic analysis. One of the most commonly used detectors in chromatographic analysis is the flame ionization detector (FID). For quantitative analysis with an FID, relative response factors may be estimated using the effective carbon number (ECN) concept. The purpose of this study was to determine the ECN for a variety of terpenoid compounds to enable improved quantification of BVOC measurements. A dynamic dilution system was developed to make quantitative gas standards of VOCs with mixing ratios from 20–55 ppb. For each experiment using this system, one terpene standard was co-injected with an internal reference, n-octane, and analyzed via an automated cryofocusing system interfaced to a gas chromatograph flame ionization detector and mass spectrometer (GC/MS/FID). The ECNs of 16 compounds (14 BVOCs) were evaluated with this approach, with each test compound analyzed at least three times. The difference between the actual carbon number and measured ECN ranged from −24% to −2%. The difference between theoretical ECN and measured ECN ranged from −22% to 9%. Measured ECN values were within 10% of theoretical ECN values for most terpenoid compounds.


Sign in / Sign up

Export Citation Format

Share Document