Improved liquid-chromatographic determination of 3-methoxy-4-hydroxyphenylethyleneglycol in urine with electrochemical detection.

1984 ◽  
Vol 30 (1) ◽  
pp. 140-143 ◽  
Author(s):  
J R Shipe ◽  
J Savory ◽  
M R Wills

Abstract In this improved method for quantifying 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) in urine, after a multistep extraction of MHPG and internal standard (iso-MHPG) from 3.0 mL of urine, the compounds are separated on a C18 reversed-phase column and quantified by use of an electro-chemical detector. The isocratic chromatographic separation takes about 16 min. The mobile phase is phosphate buffer/acetonitrile (88/12 by vol), the flow rate 0.7 mL/min. Recycling the mobile phase and automating the sample injection make possible the unattended assay of more than 70 samples per day. The within-run precision of the method is excellent (CV 1.8%) at a mean concentration of 1.1 mg/L.

1984 ◽  
Vol 30 (7) ◽  
pp. 1228-1230 ◽  
Author(s):  
A K Dhar ◽  
H Kutt

Abstract This method for determination of haloperidol in plasma is based on "high-performance" isocratic liquid chromatography with the use of a C8 bonded reversed-phase column at room temperature. Haloperidol and the internal standard (chloro-substituted analog) are extracted from alkalinized plasma into isoamyl alcohol/heptane (1.5/98.5 by vol) and back-extracted into dilute H2SO4. The aqueous phase is directly injected onto the column. The mobile phase is a 30/45/25 (by vol) mixture of phosphate buffer (16.5 mmol/L, pH 7.0), acetonitrile, and methanol. Unlike other liquid-chromatographic procedures for haloperidol, commonly used psychotropic drugs do not interfere. Analysis can be completed within an hour. The procedure is extremely sensitive (1.0 microgram/L) and is well reproducible (CV 5.6% for a 2.5 micrograms/L concentration in plasma).


1982 ◽  
Vol 28 (8) ◽  
pp. 1772-1774 ◽  
Author(s):  
R N Gupta ◽  
P T Smith ◽  
F Eng

Abstract We describe a liquid-chromatographic method involving a new, nonsilica column (XAD-2, Hamilton Co.) for pentobarbital in plasma. Plasma is extracted with chloroform after addition of the internal standard, 5-ethyl-5-p-tolyl-barbituric acid. Acidic drugs are back-extracted into alkali, then chromatographed on the resin-base reversed-phase column. The use of alkaline mobile phase allows enhanced sensitivity and detection of barbiturates at 240 nm. The within-run CV for 10 samples was 1.9%, the between-run CV 1.8%. Ten commonly used barbiturates are separated isocratically in less than 15 min. Other commonly prescribed acidic drugs do not interfere with determination of pentobarbital.


1984 ◽  
Vol 30 (5) ◽  
pp. 717-723 ◽  
Author(s):  
D J Miner ◽  
D A Binkley ◽  
L D Bechtol

Abstract We describe a sensitive, specific liquid-chromatographic determination of penbutolol and its 4-hydroxy metabolite in plasma and urine. The method involves a simple organic extraction, evaporation of the solvent, reconstitution in methanol/water, and injection into the chromatograph. Penbutolol, its metabolites, and the internal standard, propranolol, are resolved on a CN reversed-phase column and detected fluorometrically. Conjugates of penbutolol and its 4-hydroxy metabolite may be determined after a 2-h enzymic hydrolysis. Detection limits are in the range of 3 to 12 micrograms/L of plasma. The assay is reproducible and nearly free of interferences. Representative concentrations in blood and urine of normal volunteers are reported.


1990 ◽  
Vol 73 (6) ◽  
pp. 893-895 ◽  
Author(s):  
Ajay G Patel ◽  
Ramanbhai B Patel ◽  
Mukeshbhai R Patel

Abstract A liquid chromatographic (LC) method has been developed for determination of clobetasone-17-butyrate In ointment using clobetasone propionate as an internal standard. Separation was carried out on a C18 reverse-phase column using water-methanol as a mobile phase. Methylparaben and propylparaben (both sodium salt) used as preservatives did not Interfere with separation. Compounds are detected photometrically at 235 nm. Mean assay results for 0.05% commercial ointments were 100.36% (n = 5). Mean recovery of clobetasone-17-butyrate added to commercial ointment was 99.89%.


1983 ◽  
Vol 29 (10) ◽  
pp. 1840-1842 ◽  
Author(s):  
J Lehmann ◽  
H L Martin

Abstract We have adapted to erythrocytes a method for the determination of alpha- and gamma-tocopherols in plasma and platelets. Erythrocytes (50 microL) were extracted with methanol containing tocol (internal standard) and pyrogallol. Tocopherols were partitioned into chloroform, washed, and injected in methanol onto a reversed-phase (C18) "high-performance" liquid-chromatographic column. The mobile phase was methanol/water (99/1 by vol) at a flow rate of 2 mL/min and detection was with a "high-performance" spectrophotofluorometer. The limit of detection for either tocopherol is 0.10 microgram/mL of packed cells. Analytical recoveries ranged from 93 to 104%. Some values for tocopherols in human erythrocytes are presented.


1986 ◽  
Vol 69 (5) ◽  
pp. 915-918
Author(s):  
Edward J Kikta ◽  
◽  
E Bane ◽  
A Burns ◽  
A Christensen ◽  
...  

Abstract A liquid chromatographic (LC) method for the analysis of technical and formulated carbofuran samples was evaluated in a collaborative study. Carbofuran is determined by reverse phase LC, using a water-methanol mobile phase and acetophenone as internal standard, and detected at 280 nm. Twelve samples, 5 formulations and technical matched pairs, were analyzed by 17 collaborating laboratories. Accuracy and variability of results are typical of large LC data sets. The method has been adopted official first action.


1980 ◽  
Vol 26 (9) ◽  
pp. 1351-1354 ◽  
Author(s):  
J Blanchard ◽  
J D Mohammadi ◽  
K A Conrad

Abstract We describe a rapid, specific, and sensitive liquid-chromatographic micro-method for caffeine in plasma. Each plasma sample can be assayed within about 15 min of its receipt. Samples are denatured with acetonitrile, centrifuged, and the supernate is chromatographed on a reversed-phase column. Only 100 microL of plasma is required, and concentrations as low as 0.3 mg/L can be measured accurately. Other xanthines and their metabolites do not interfere. The small sample required makes the procedure ideally suited for measuring caffeine in the plasma of infants and small animals as well as adults.


1980 ◽  
Vol 26 (2) ◽  
pp. 197-200
Author(s):  
J G Flood ◽  
G N Bowers ◽  
R B McComb

Abstract We report a common methodology for determining three antiarrhythmic drugs: disopyramide, lidocaine, and quinidine. Alkalinized serum and internal standard (p-chlorodisopyramide) are extracted into dichloromethane, the organic phase is evaporated, and the redissolved residue is injected onto a reversed-phase column (micron Bondapack C18). Quantitation is via peak-height ratios of analyte vs internal standard (as detected at 205 nm) referenced to a serum-based multiple-drug standard. A mobile phase of 30 mmol/L phosphate buffer and acetonitrile (72/28 by vol) is used. These conditions yiel; optimum separation and band symmetry for the analytes and some of their metabolites. Crucial factors in this simultaneous assay include pH of the mobile phase and injected solution, extraction time, and evaporation technique. Day-to-day precision (CV) for all drugs was less than 5%, and correlation with other assay techniques for each drug is reported. The method enables more efficient use of personnel and instrumentation without sacrificing analytical quality.


1980 ◽  
Vol 26 (2) ◽  
pp. 197-200 ◽  
Author(s):  
J G Flood ◽  
G N Bowers ◽  
R B McComb

Abstract We report a common methodology for determining three antiarrhythmic drugs: disopyramide, lidocaine, and quinidine. Alkalinized serum and internal standard (p-chlorodisopyramide) are extracted into dichloromethane, the organic phase is evaporated, and the redissolved residue is injected onto a reversed-phase column (micron Bondapack C18). Quantitation is via peak-height ratios of analyte vs internal standard (as detected at 205 nm) referenced to a serum-based multiple-drug standard. A mobile phase of 30 mmol/L phosphate buffer and acetonitrile (72/28 by vol) is used. These conditions yiel; optimum separation and band symmetry for the analytes and some of their metabolites. Crucial factors in this simultaneous assay include pH of the mobile phase and injected solution, extraction time, and evaporation technique. Day-to-day precision (CV) for all drugs was less than 5%, and correlation with other assay techniques for each drug is reported. The method enables more efficient use of personnel and instrumentation without sacrificing analytical quality.


Sign in / Sign up

Export Citation Format

Share Document