Improved liquid-chromatographic determination of haloperidol in plasma.

1984 ◽  
Vol 30 (7) ◽  
pp. 1228-1230 ◽  
Author(s):  
A K Dhar ◽  
H Kutt

Abstract This method for determination of haloperidol in plasma is based on "high-performance" isocratic liquid chromatography with the use of a C8 bonded reversed-phase column at room temperature. Haloperidol and the internal standard (chloro-substituted analog) are extracted from alkalinized plasma into isoamyl alcohol/heptane (1.5/98.5 by vol) and back-extracted into dilute H2SO4. The aqueous phase is directly injected onto the column. The mobile phase is a 30/45/25 (by vol) mixture of phosphate buffer (16.5 mmol/L, pH 7.0), acetonitrile, and methanol. Unlike other liquid-chromatographic procedures for haloperidol, commonly used psychotropic drugs do not interfere. Analysis can be completed within an hour. The procedure is extremely sensitive (1.0 microgram/L) and is well reproducible (CV 5.6% for a 2.5 micrograms/L concentration in plasma).

1983 ◽  
Vol 29 (10) ◽  
pp. 1840-1842 ◽  
Author(s):  
J Lehmann ◽  
H L Martin

Abstract We have adapted to erythrocytes a method for the determination of alpha- and gamma-tocopherols in plasma and platelets. Erythrocytes (50 microL) were extracted with methanol containing tocol (internal standard) and pyrogallol. Tocopherols were partitioned into chloroform, washed, and injected in methanol onto a reversed-phase (C18) "high-performance" liquid-chromatographic column. The mobile phase was methanol/water (99/1 by vol) at a flow rate of 2 mL/min and detection was with a "high-performance" spectrophotofluorometer. The limit of detection for either tocopherol is 0.10 microgram/mL of packed cells. Analytical recoveries ranged from 93 to 104%. Some values for tocopherols in human erythrocytes are presented.


1984 ◽  
Vol 30 (1) ◽  
pp. 140-143 ◽  
Author(s):  
J R Shipe ◽  
J Savory ◽  
M R Wills

Abstract In this improved method for quantifying 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) in urine, after a multistep extraction of MHPG and internal standard (iso-MHPG) from 3.0 mL of urine, the compounds are separated on a C18 reversed-phase column and quantified by use of an electro-chemical detector. The isocratic chromatographic separation takes about 16 min. The mobile phase is phosphate buffer/acetonitrile (88/12 by vol), the flow rate 0.7 mL/min. Recycling the mobile phase and automating the sample injection make possible the unattended assay of more than 70 samples per day. The within-run precision of the method is excellent (CV 1.8%) at a mean concentration of 1.1 mg/L.


1982 ◽  
Vol 28 (10) ◽  
pp. 2143-2148 ◽  
Author(s):  
P M Edelbroek ◽  
E J de Haas ◽  
F A de Wolff

Abstract To study correlations between the concentrations, in serum, of amitriptyline and its most important metabolites with clinical response in patients, we developed a "high-performance" liquid-chromatographic method for routine determination of amitriptyline, nortriptyline, total 10-hydroxy-amitriptyline, desmethylnortriptyline, and E(trans)- and Z(cis)-10-hydroxynortriptyline. These compounds are extracted from 1 mL of alkalinized serum into hexane/isoamyl alcohol (99/1 by vol). Perazine is the internal standard. To minimize irreversible adsorption of the drugs onto the glassware, 5 micrograms of maprotiline is added to the organic phase just before evaporation. After a 10-min resolution on a silica column eluted with acetonitrile/methanol/NH4OH (1 mol/L), absorbance is measured at 240 nm. Only chlorimipramine, doxepin, procainamide, and N-acetylprocainamide may interfere with assay of the compounds that probably are therapeutically relevant: amitriptyline, nortriptyline, and E-10-hydroxynortriptyline. Uremia, lipemia, and icterus also do not affect the analysis.


1981 ◽  
Vol 27 (3) ◽  
pp. 437-440 ◽  
Author(s):  
D R Uges ◽  
P Bouma

Abstract We have developed "high-performance" liquid-chromatographic methods for determining 4-aminopyridine, an acetylcholine-releasing drug, in serum, saliva, and urine. As little as 1 microgram/L can be detected by extracting the alkalinized sample plus the internal standard (3,4-diaminopyridine) into dichloromethane, mixing the organic phase with 1-pentanol, evaporating the dichloromethane, and injecting the residue onto a reversed-phase column, where it is eluted with acetonitrile/methanol/aqueous ammonium carbonate, with detection at 245 nm. Analytical recoveries from serum averaged 86.7%. The CV at 50 micrograms/L was 2.9% (n = 8). For urine samples containing very high concentrations of 4-aminopyridine, we mixed urine and potassium carbonate in an automatic injector vial, extracted the drug into dichloromethane, centrifuged, and injected an aliquot of the extract into the chromatograph. Analytical recoveries averaged 92%, and the CV was about 2% for drug concentrations of 0.1-8 mg/L of urine.


1982 ◽  
Vol 28 (8) ◽  
pp. 1772-1774 ◽  
Author(s):  
R N Gupta ◽  
P T Smith ◽  
F Eng

Abstract We describe a liquid-chromatographic method involving a new, nonsilica column (XAD-2, Hamilton Co.) for pentobarbital in plasma. Plasma is extracted with chloroform after addition of the internal standard, 5-ethyl-5-p-tolyl-barbituric acid. Acidic drugs are back-extracted into alkali, then chromatographed on the resin-base reversed-phase column. The use of alkaline mobile phase allows enhanced sensitivity and detection of barbiturates at 240 nm. The within-run CV for 10 samples was 1.9%, the between-run CV 1.8%. Ten commonly used barbiturates are separated isocratically in less than 15 min. Other commonly prescribed acidic drugs do not interfere with determination of pentobarbital.


1979 ◽  
Vol 25 (7) ◽  
pp. 1300-1302 ◽  
Author(s):  
S H Petersdorf ◽  
V A Raisys ◽  
K E Opheim

Abstract We describe the use of "high-performance" liquid chromatography to measure chloramphenicol in as little as 25 microL of serum. Serum is treated to precipitate proteins with acetonitrile containing p-nitroacetanilide as an internal standard. Chloramphenicol is eluted with a mobile phase of methanol in pH 7.0 phosphate buffer (35/65 by vol). The drug is measured at 278 nm and simultaneously monitored at 254 nm; interfering substances are detected by examining the 278 nm/254 absorbance ratios. This method is sensitive to less than 0.5 mg/L and the standard curve is linear to at least 50 mg/L. Inter-day precision ranged between 3--6%. We encountered no interference from endogenous compounds or from other drugs we tested.


1988 ◽  
Vol 34 (9) ◽  
pp. 1897-1899 ◽  
Author(s):  
M H Cheng ◽  
W Y Huang ◽  
A I Lipsey

Abstract This high-performance liquid-chromatographic (HPLC) method for simultaneous determination of prednisone and its metabolite, prednisolone, in plasma is a modification of the method of Frey et al. (Clin Chem 1979;25:1944-7). Heparinized plasma (1.0 mL) with 0.1 mL of internal standard solution (11-deoxy-17-hydroxycorticosterone, 2 mg/L) is extracted with 7.0 mL of dichloromethane, then washed sequentially with 0.1 mol/L HCl, 0.1 mol/L NaOH, and deionized water, 2.0 mL each. The extract is evaporated and the residue reconstituted with 75 microL of mobile phase, methanol/H2O (40/60 by vol). Thirty microliters of this is injected onto a reversed-phase C6 column, which is eluted at 1.4 mL/min. Analytical recoveries of prednisone and prednisolone were 94-98% and 102-106%, respectively. Day-to-day precision (CV) was 3.8% for prednisone, 6.1% for prednisolone. We encountered no interference from the 21 other steroids and 25 drugs tested. This method is simple, accurate, and precise.


1985 ◽  
Vol 31 (7) ◽  
pp. 1222-1224 ◽  
Author(s):  
G Houin ◽  
J P Jeanniot ◽  
P Ledudal ◽  
J Barré ◽  
J P Tillement

Abstract We describe a "high-performance" liquid-chromatographic assay for simultaneously determining propisomide and its mono-N-dealkylated metabolite in plasma and urine. After extraction with dichloromethane at alkaline pH, the unchanged drug, its metabolite, and the internal standard are separated by liquid chromatography on a reversed-phase column and the absorbance of the eluate is measured at 254 nm. Selectivity, sensitivity, and reproducibility are excellent. Results are similar to those by gas chromatography for propisomide but, in addition, the metabolite can be simultaneously measured in the same clinical sample. We also report results by this method for blood and plasma samples from a volunteer receiving a single 200-mg dose of propisomide.


1983 ◽  
Vol 29 (6) ◽  
pp. 1104-1105 ◽  
Author(s):  
B A Robinson ◽  
F N Cornell

Abstract A simple, rapid "high-performance" liquid-chromatographic procedure is presented for the determination of aminoglutethimide in plasma. After precipitation of the protein with acetonitrile, an aliquot of the supernate is injected directly onto a radially compressed, reversed-phase column. The aminoglutethimide is isocratically eluted with a mobile phase of acetonitrile/water/tert-butyl ammonium phosphate. The method is both accurate and precise and has been in routine use in our laboratory for more than 12 months.


Sign in / Sign up

Export Citation Format

Share Document