plasma sample
Recently Published Documents


TOTAL DOCUMENTS

270
(FIVE YEARS 48)

H-INDEX

35
(FIVE YEARS 4)

Medicine ◽  
2021 ◽  
Vol 100 (51) ◽  
pp. e28382
Author(s):  
Peng Ye ◽  
Peiling Cai ◽  
Jing Xie ◽  
Jie Zhang

Author(s):  
Franziska Gaunitz ◽  
Hilke Andresen-Streichert

AbstractThe case report centres on analytical findings from a spice sample (mixed with tobacco (as a cigarette) for consumption), and its corresponding plasma sample, smoked by a 31-year-old man who was attended by emergency services following collapse. The man was fully conscious and cooperative during initial medical treatment. Suddenly, he suffered a complete loss of self-control, whereupon the police was notified. The man encountered the police officers when exiting the apartment, at which point he threatened them with clenched fists and reached for a plant bucket in order to strike out in the direction of the officers. At the trial, he described himself as confused and as being completely overwhelmed, having lost self-control, suffered a panic attack and “just wanted to get out the situation”. Furthermore, he stated that he had no recollection of the incident. He feared death due to palpitations, heart pain, dizziness and repetitive anxiety states. Routine systematic as well as extended toxicological analysis of the plasma sample, taken approximately 2 h after the incident, confirmed the use of cannabis and spice. Plasma concentrations of THC, OH-THC and THC-COOH were 8.0 μg/L, 4.0 μg/L and 147 μg/L, respectively. Furthermore, analysis confirmed uptake of 5F-ADB (5F-MDMB-PINACA) via detection of both 5F-ADB and the 5F-ADB N-(5-OH-pentyl) metabolite. The spice sample additionally contained 5F-MDMB-PICA, which was not detected in the plasma sample. A differentiation between a possible co-use and a recent use of cannabis was not possible. In summary, this case once more underlines the health risks of spice use.


2021 ◽  
pp. 114475
Author(s):  
Hossein Tavallali ◽  
Gohar Deilamy-Rad ◽  
Abolftah Parhami ◽  
Reza Zebarjadi ◽  
Arshida Najafi-Nejad ◽  
...  

2021 ◽  
Author(s):  
Mark G. Papich ◽  
Roger J. Narayan

Abstract Naloxone and nalmefene were administered to seven research Beagle dogs, (mean weight approximately 12 kg) at a dose of 0.04 mg/kg and 0.014 mg/kg for naloxone and nalmefene, respectively. Each dose was administered intramuscularly (IM) with a standard IM injection and with a hollow microneedle device array using needles of 1 mm in length. The IM injection was delivered in the epaxial muscles, and the microneedle injection was delivered in the skin over the shoulder of each dog. Each dog received the same injections in a cross-over design. Following the injection, blood samples were collected for plasma analysis of naloxone and nalmefene by high pressure liquid chromatography with mass spectrometry detection (LCMS). The plasma sample concentrations were plotted for observed patterns of absorption and analyzed with non-compartmental pharmacokinetic methods (NCA). The results showed that the injection of naloxone from the microneedle device produced a higher peak concentration (CMAX) by 2.15x compared the IM injection of the same dose, and time to peak concentration (TMAX) was similar. For the nalmefene injection, the peak was not as high (lower CMAX) by 0.94x for the microneedle injection compared to the IM injection of the same dose. The microneedle produced an exposure, measured by area under the curve (AUC)) that was 0.85x and 0.58x as high for naloxone and nalmefene, respectively, than the injection by the IM route. We also observed that although the dose for naloxone was approximately 3x higher for naloxone compared to nalmefene, the mean peak concentration achieved from the naloxone injection was more than 12x higher than the nalmefene injection. These studies were designed to test the feasibility of using the hollow microneedle array as an effective method of naloxone and nalmefene delivery for emergency treatment of opioid-induced respiratory depression (OIRD). The results of these studies will form the basis of future studies, using the dog as a model, for development of hollow microneedle microarray devices to deliver opioid antagonists for treatment of OIRD in people.


2021 ◽  
Vol 21 (5) ◽  
pp. 1180
Author(s):  
Sekar Ayu Pawestri ◽  
Akhmad Kharis Nugroho ◽  
Endang Lukitaningsih ◽  
Purwantiningsih Purwantiningsih

Pharmacokinetics studies of domperidone generally analyze plasma matrix samples. The present work aimed to develop and validate a rapid and simple reversed phase-HPLC method for quantifying domperidone in plasma matrices. The chromatographic method implemented: 1. Luna Phenomenex® C18 (250 mm × 4.6 mm i.d; 5 µm) column, 2. isocratic mobile phase mixture of phosphate buffer 0.02 M:acetonitrile (70:30, v/v) with a flow rate of 1 mL/min, 3. UV detection at 285 nm. Domperidone and propranolol hydrochloride (as internal standard) were extracted from the deproteinated plasma sample. The method linearity was 0.998 in the range concentration of 15–200 ng/mL. The percentage of accuracy error was between -8.49–4.31%, while the percentage coefficient variation of precision ranged between 5.11–14.24%. This proposed method was simple, rapid (separation time less than 10 min), and selective. The validation parameters responses satisfied the method's requirements to determine domperidone in a plasma sample.


2021 ◽  
Vol 167 ◽  
pp. 106317
Author(s):  
María Ángeles Goberna-Bravo ◽  
Jaume Albiol-Chiva ◽  
Juan Peris-Vicente ◽  
Samuel Carda-Broch ◽  
Josep Esteve-Romero

Author(s):  
DIBYA DAS ◽  
DHIMAN HALDER ◽  
ANIRBANDEEP BOSE ◽  
CHIRANJIT SAHA ◽  
HIMANGSHU SEKHAR MAJI ◽  
...  

Objective: The present study's objective is to conduct a comparative bioavailability study with a special emphasis on the test product's bioequivalence using a standard reference product as a comparator. Methods: Before initiating the bioequivalent study, the plasma sample analysis method was developed and validated by using LC-MS/MS method. The entire study was conducted as a single-dose crossover randomized bioequivalence study with open-label, two treatment, two-period, and two sequences on 24 healthy volunteers under fasting condition. With proper informed consent process the oral dose of the Reference product (R) or Test product (T) was administered on healthy volunteers at 0 h during each period of the study. After the drug's oral administration, a certain quantity of blood sample was collected, and the plasma sample was separated using a cold centrifuge. The plasma samples were analysed by using the validated LC-MS/MS method. The pharmacokinetic parameters, statistical data and ANOVA of the test and reference product were evaluated. Results: The Cmax, Auc0-t, AUC0-∞ and tmax of the test product were found to be 6.29 ng/ml, 117.0 ng. h/ml, 161.67 ng. h/ml and 3.33 h. respectively. And the Cmax, Auc0-t, AUC0-∞ and tmax of reference product were found 6.59 ng/ml, 123.21 ng. h./ml, 172.20 ng. h/ml and 3.38 h respectively. Relative bioavailability was found 94.96%. The overall results show that the 90% confidence intervals (Log-Transformed and Untransformed) for Cmax, AUC0-t and AUC0-∞ for Azelnidipine were within the acceptable limit of 80%-125%. Conclusion: The entire study's conclusion can be drawn as the test product was bioequivalent with the reference product's comparator.


Sign in / Sign up

Export Citation Format

Share Document