acidic drugs
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 18)

H-INDEX

38
(FIVE YEARS 3)

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3226
Author(s):  
Stefano Fais ◽  
Yoshinori Marunaka

Multiple myeloma (MM) is a hematological malignancy with a poor prognosis while with a long and progressive outcome. To date, the therapeutic options are restricted to few drugs, including thalidomide or its derivates and autologous transplantation including stem-cell transplantation. More recently, the use of both proteasome inhibitors and monoclonal antibodies have been included in MM therapy, but the clinical results are still under evaluation. Unfortunately, death rates (within the 5-year overall survival rates) are still very high (45%), with no relevant improvement over the past 10 years. Here, we discuss data supporting a new therapeutic approach against MM, based on a common phenotype of tumor malignancies, which is the acidic microenvironment. Extracellular acidity drastically reduces the efficacy of both anti-tumor drugs and the immune reaction against tumors. Pre-clinical data have shown that anti-acidic drugs, such as proton pump inhibitors (PPIs), have a potent cytotoxic effect against human MM cells, thus supporting their use in the treatment of this malignancy. Here, we discuss also similarities between MM and type II diabetes mellitus (DM) with high risk of developing MM, suggesting that both anti-diabetic drugs and a hypocaloric diet may help in curing MM patients.


2020 ◽  
Vol 18 (1) ◽  
pp. 1218-1229 ◽  
Author(s):  
Mpingana Ndilimeke Akawa ◽  
Kgogobi Mogolodi Dimpe ◽  
Philiswa Nosizo Nomngongo

AbstractIn the present study, a convenient and highly effective method was developed for the quantification of acidic drugs in wastewater and river water samples. Ultrasonic-assisted magnetic solid phase extraction employing magnetic waste tyre-based activated carbon nanocomposite functionalized with [3-(2-aminoethylamino)propyl]trimethoxysilane as a cost-effective and efficient adsorbent was used for the extraction and preconcentration of acidic drugs (naproxen [NAP], ketoprofen (KET) and diclofenac [DIC]). The quantification of target analytes was achieved by high‐performance liquid chromatography with diode array detector. Under optimum conditions, the detection limit, quantification limit and relative standard deviation obtained for the analytes of interest ranged from 0.38 to 0.76, 1.26 to 2.54 µg L−1 and 2.02 to 4.06%, respectively. The applicability of the developed method was assessed by the spike recovery tests and the relative recoveries proved that the method is reliable for the determination of acidic drugs in wastewater. Thereafter, the method was applied successfully for the determination of NAP, KET and DIC in river water, influent and effluent wastewater.


2020 ◽  
Vol 20 (5) ◽  
pp. 987
Author(s):  
Nurzaimah Zaini @ Othman ◽  
Nor Suhaila Mohamad Hanapi ◽  
Nor’ashikin Saim ◽  
Wan Nazihah Wan Ibrahim ◽  
Ahmad Lutfi Anis

A rapid and effective method is developed for selective determination of five selected acidic drugs (salicylic acid, naproxen, diclofenac, ibuprofen and mefenamic acid) in water samples by using online solid phase extraction (Online-SPE) prior to liquid chromatography diode array detector (LC-DAD) analysis. In this study, Alginate incorporated multi-walled carbon nanotubes (Alg-MWCNT) beads were prepared and utilized as solid phase extraction sorbent. Optimization of online SPE-LC operating parameters such as valve switching time, composition of acetonitrile and buffer pH was conducted using Box-Behnken Design of Response Surface Methodology (RSM) to evaluate the interactive effects of these three variables. Under the optimized conditions (valve switching time: 1.5 min, composition of acetonitrile: MSA, 60:40 and buffer pH: pH 2), the method showed good linearity (1–500 μg L−1) with coefficient of determination (R2) of 0.9971–0.9996 and low limits of detection ≤ 0.018 µg L–1. The method showed high relative recoveries in the range of 75–110% for river water and tap water samples, respectively with RSDs of ≤ 7.8 (n = 3). This method was successfully applied to the determination of acidic drugs in river and tap water samples. In addition, Alg-MWCNT sorbent offered high degree of selectivity and efficiency for online SPE-LC-DAD analysis.


Sign in / Sign up

Export Citation Format

Share Document