Determination of creatinine in serum and urine by a rapid liquid-chromatographic method

1990 ◽  
Vol 36 (6) ◽  
pp. 830-836 ◽  
Author(s):  
R Paroni ◽  
C Arcelloni ◽  
I Fermo ◽  
P A Bonini

Abstract We describe an HPLC ion-pair procedure for rapid and specific evaluation of creatinine in serum and urine. We used a 15 cm X 4.6 mm ODS column with a 50/50 (by vol) mixture of sodium decanesulfonic acid (10 mmol/L, pH 3.2) and methanol and measured absorbance at 236 nm. Serum (100 microL) or 30-fold-diluted urine (100 microL) was added to 400 microL of acetone. After centrifugation, the supernates (300 microL) were dried, reconstituted with the mobile phase, and injected into the HPLC. Assay precision was tested for concentrations of 10, 29, and 130 mg/L and yielded, respectively, 3.1%, 2.1%, and 1.1% for within-day CV and 2.8%, 2.1%, and 2.2% for total CV. Analytical recovery was 102 (+/- 6.7%). Linearity was demonstrated in the 0-200 mg/L range for serum and 0-3.5 g/L range for urine (r greater than or equal to 0.999). The detection limit for creatinine (signal-to-noise ratio = 3) was 0.5 mg/L. We used cimetidine for internal standardization. Correlation was good between this procedure and the Jaffé kinetic, the enzymatic (creatinine amidohydrolase), and the Fuller's earth alkaline picrate methods.

1988 ◽  
Vol 34 (1) ◽  
pp. 87-90 ◽  
Author(s):  
K Abe ◽  
R Konaka

Abstract We describe a "high-performance" liquid-chromatographic method for determining 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) in human urine. MHPG is separated on a reversed-phase column with isocratic elution, oxidized with sodium metaperiodate, and its absorbance measured at 365 nm. This method shows higher specificity, less interference for MHPG than methods involving electrochemical or fluorescence detection. Post-column derivatization of MHPG with periodate yields vanillin. The detection limit (twice the signal-to-noise ratio) in urine samples was 0.08 mg/L. Mean analytical recovery was 72%. Within-assay and day-to-day CVs were 2.9% and 6.5%, respectively. Reference intervals for MHPG in 24-h urine from apparently healthy subjects were 0.85-3.24 mg/day for men and 0.63-2.20 mg/day for women. In terms of creatinine excretion, the respective reference intervals were 0.55-1.99 and 0.70-1.96 mg per gram of creatinine.


1987 ◽  
Vol 33 (1) ◽  
pp. 72-75 ◽  
Author(s):  
M Zumárraga ◽  
I Andia ◽  
B Bárcena ◽  
M I Zamalloa ◽  
R Dávilla

Abstract We describe a sensitive, simple method for measuring homovanillic acid in human plasma. The method is based on liquid chromatography with electrochemical detection. Sensitivity was 125 pg of homovanillic acid per injection. Samples were deproteinized and extracted with organic solvent before chromatography. Quantification was by the standard-additions technique. Analytical recovery of added HVA was 44.8 (SD 6.2%). We confirmed specificity by using serial amperometric detectors.


1980 ◽  
Vol 26 (2) ◽  
pp. 295-296 ◽  
Author(s):  
M J Stumph ◽  
M W Noall ◽  
V Knight

Abstract We describe a gas--liquid-chromatographic method for determining the concentration of amantadine hydrochloride in urine with beta-phenylethylamine as internal standard. The urine sample is made alkaline and extracted with 0.5 mL of chloroform. After centrifugation the aqueous layer is aspirated, and an aliquot of the organic layer is injected directly into the gas chromatograph. Concentration and instrument response are linearly related between 2 and 125 mg/L. The limit of detection was 0.5 mg/L. Mean analytical recovery was calculated to be 97%.


1979 ◽  
Vol 25 (3) ◽  
pp. 409-412 ◽  
Author(s):  
C G Fletterick ◽  
T H Grove ◽  
D C Hohnadel

Abstract We describe a sensitive and precise "high-pressure" liquid-chromatographic method for determining acetaminophen in serum. The 2-acetaminophenol and 3-acetaminophenol structural isomers of acetaminophen are used as internal standards. The method, which involves solvent extraction and adsorption chromatography on silica, provides excellent sensitivity, accuracy, and selectivity. The standard curve is linear over the range of acetaminophen concentrations of 0.5 to 300 mg/L, which makes the method useful for both pharmacokinetic studies and overdose monitoring. Analytical recovery is 97% for acetaminophen concentrations ranging from 5 to 300 mg/L. Many commonly used drugs were tested and found not to interfere. The procedure has been successfully adapted as a microscale method requiring only 50 microL of sample. The microscale method is particularly useful for pediatric and neonatal patients for whom sample size is a major concern.


1980 ◽  
Vol 26 (2) ◽  
pp. 295-296 ◽  
Author(s):  
M J Stumph ◽  
M W Noall ◽  
V Knight

Abstract We describe a gas--liquid-chromatographic method for determining the concentration of amantadine hydrochloride in urine with beta-phenylethylamine as internal standard. The urine sample is made alkaline and extracted with 0.5 mL of chloroform. After centrifugation the aqueous layer is aspirated, and an aliquot of the organic layer is injected directly into the gas chromatograph. Concentration and instrument response are linearly related between 2 and 125 mg/L. The limit of detection was 0.5 mg/L. Mean analytical recovery was calculated to be 97%.


1982 ◽  
Vol 28 (10) ◽  
pp. 2139-2143 ◽  
Author(s):  
F Y Leung ◽  
A R Henderson

Abstract This method for determining aluminum in serum and urine is essentially free from matrix interference and gives a linear response with concentration to at least 500 micrograms/l. Use of a stabilized temperature platform (L'vov platform, Perkin-Elmer Corp.) to approach a "steady-state" temperature, addition of matrix modifiers [especially Mg(NO3)2], and the use of peak area integration all helped substantially diminish spectral interference. With the platform furnace, serum protein concentrations as great as 260 g/L did not interfere with the determination of Al. The within- and between-assay precision (CV) was less than or equal to 3.5% and less than or equal to 7.4%, respectively. Analytical recovery of Al added to serum ranged between 95 and 101% throughout the linear calibration range (to 500 micrograms/L), either when measured directly from the standard curve or by the method of standard additions. The reference interval for Al in 28 healthy subjects was 2-14 micrograms/L (mean 6.5, SD 4.1 micrograms/L), and for 130 patients on hemodialysis, 20-550 micrograms/L (mean 87.5, SD 62.5 micrograms/L).


Sign in / Sign up

Export Citation Format

Share Document