scholarly journals The numerical solution of second order hyperbolic partial differential equations with unequally spaced initial conditions

1975 ◽  
Vol 18 (3) ◽  
pp. 252-257 ◽  
Author(s):  
E. H. Twizell
2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Allaberen Ashyralyev ◽  
Fadime Dal ◽  
Zehra Pinar

The stable difference scheme for the numerical solution of the mixed problem for the multidimensional fractional hyperbolic equation is presented. Stability estimates for the solution of this difference scheme and for the first and second orders difference derivatives are obtained. A procedure of modified Gauss elimination method is used for solving this difference scheme in the case of one-dimensional fractional hyperbolic partial differential equations.


Author(s):  
Ravi P. Agarwal

AbstractUniformly monotone convergent iterative methods for obtaining multiple solutions of (n + m)th order hyperbolic partial differential equations together with initial conditions are discussed. Appropriate partial differential inequalities which connect upper and lower solutions, and variation of parameters formula is developed.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
S. N. Jator ◽  
F. F. Ngwane ◽  
N. O. Kirby

We present a block hybrid functionally fitted Runge–Kutta–Nyström method (BHFNM) which is dependent on the stepsize and a fixed frequency. Since the method is implemented in a block-by-block fashion, the method does not require starting values and predictors inherent to other predictor-corrector methods. Upon deriving our method, stability is illustrated, and it is used to numerically solve the general second-order initial value problems as well as hyperbolic partial differential equations. In doing so, we demonstrate the method’s relative accuracy and efficiency.


Sign in / Sign up

Export Citation Format

Share Document