scholarly journals An Algorithm for Solving Non-Linear Equations Based on the Secant Method

1965 ◽  
Vol 8 (1) ◽  
pp. 66-72 ◽  
Author(s):  
J. G. P. Barnes
2016 ◽  
Vol 35 ◽  
pp. 127-134
Author(s):  
Goutam Kumar Saha ◽  
Shapla Shirin

In this paper fuzzy version of secant method has been introduced to obtain approximate solutions of a fuzzy non-linear equation. Graphical representations of the approximate solutions have also been shown. The idea of converging to the root to the desired degree of accuracy, which is the optimum solution, of a fuzzy non-linear equation has been focused.GANIT J. Bangladesh Math. Soc.Vol. 35 (2015) 127-134


2015 ◽  
Vol 5 ◽  
pp. 121-125
Author(s):  
Iswarmani Adhikari

The aim of this paper is to apply the iteration methods for the solution of non-linear equations. Among the various root finding techniques, two of the common iterative methods Regula-falsi (false position) and the Secant method are used in two different problems to show the applications of numerical analysis in different fields. The Himalayan Physics Vol. 5, No. 5, Nov. 2014 Page: 121-125


2019 ◽  
Vol 21 (1) ◽  
pp. 21-31
Author(s):  
Patrisius Batarius ◽  
Alfri Aristo SinLae

Determining the root of an equation means making the equation equal zero, (f (f) = 0). In engineering, there are often complex mathematical equations. With the numerical method approach, the equation can be searching for the value of the equation root. However, to find a double root approach with several numerical methods such as the bisection method, regulatory method, Newton-Raphson method, and Secant method, it is not efficient in determining multiple roots. This study aims to determine the roots of non-linear equations that have multiple roots using the modified Secant method. Besides knowing the effect of determining the initial value for the Secant method that is modifying in determining the non-linear root of persistence that has multiple roots. Comparisons were also make to other numerical methods in determining twin roots with the modified Secant method. A comparison is done to determine the initial value used. Simulations are performing on equations that have one single root and two or more double roots.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Guillaume Bossard ◽  
Axel Kleinschmidt ◽  
Ergin Sezgin

Abstract We construct a pseudo-Lagrangian that is invariant under rigid E11 and transforms as a density under E11 generalised diffeomorphisms. The gauge-invariance requires the use of a section condition studied in previous work on E11 exceptional field theory and the inclusion of constrained fields that transform in an indecomposable E11-representation together with the E11 coset fields. We show that, in combination with gauge-invariant and E11-invariant duality equations, this pseudo-Lagrangian reduces to the bosonic sector of non-linear eleven-dimensional supergravity for one choice of solution to the section condi- tion. For another choice, we reobtain the E8 exceptional field theory and conjecture that our pseudo-Lagrangian and duality equations produce all exceptional field theories with maximal supersymmetry in any dimension. We also describe how the theory entails non-linear equations for higher dual fields, including the dual graviton in eleven dimensions. Furthermore, we speculate on the relation to the E10 sigma model.


Author(s):  
Vesa Mustonen

SynopsisThe existence of a variational solution is shown for the strongly non-linear elliptic boundary value problem in unbounded domains. The proof is a generalisation to Orlicz-Sobolev space setting of the idea introduced in [15] for the equations involving polynomial non-linearities only.


Sign in / Sign up

Export Citation Format

Share Document