Multi-Band Contourlet Transform For Adaptive Remote Sensing Image Denoising

2019 ◽  
Vol 63 (7) ◽  
pp. 1084-1098
Author(s):  
Haijiang Wang ◽  
Jingpu Wang ◽  
Fuqi Yao ◽  
Yongqiang Ma ◽  
Lihong Li ◽  
...  

Abstract The ability to remove noise from remote sensing images, while retaining the important features of the images, is becoming increasingly important. In this paper, we introduce the multi-band contourlet transform, a new method for adaptively denoising remote sensing images. We describe existing methods that use multi-resolution analysis transforms for denoising images and discuss their respective advantages and disadvantages. We then introduce our novel denoising method, which exploits the advantages of existing methods. We summarize the results of a comprehensive set of experiments designed to evaluate the performance of our method and compare it with the performance of existing methods. The results demonstrate that our method is superior to existing methods, both in terms of its ability to denoise images and to retain salient features of those images following denoising.

2008 ◽  
Vol 28 (3) ◽  
pp. 462-466 ◽  
Author(s):  
张晶晶 Zhang Jingjing ◽  
方勇华 Fang Yonghua

2020 ◽  
Vol 12 (8) ◽  
pp. 1278 ◽  
Author(s):  
Tian-Hui Ma ◽  
Zongben Xu ◽  
Deyu Meng

Noise removal is a fundamental problem in remote sensing image processing. Most existing methods, however, have not yet attained sufficient robustness in practice, due to more or less neglecting the intrinsic structures of remote sensing images and/or underestimating the complexity of realistic noise. In this paper, we propose a new remote sensing image denoising method by integrating intrinsic image characterization and robust noise modeling. Specifically, we use low-Tucker-rank tensor approximation to capture the global multi-factor correlation within the underlying image, and adopt a non-identical and non-independent distributed mixture of Gaussians (non-i.i.d. MoG) assumption to encode the statistical configurations of the embedded noise. Then, we incorporate the proposed image and noise priors into a full Bayesian generative model and design an efficient variational Bayesian algorithm to infer all involved variables by closed-form equations. Moreover, adaptive strategies for the selection of hyperparameters are further developed to make our algorithm free from burdensome hyperparameter-tuning. Extensive experiments on both simulated and real multispectral/hyperspectral images demonstrate the superiority of the proposed method over the compared state-of-the-art ones.


Author(s):  
Xiaochuan Tang ◽  
Mingzhe Liu ◽  
Hao Zhong ◽  
Yuanzhen Ju ◽  
Weile Li ◽  
...  

Landslide recognition is widely used in natural disaster risk management. Traditional landslide recognition is mainly conducted by geologists, which is accurate but inefficient. This article introduces multiple instance learning (MIL) to perform automatic landslide recognition. An end-to-end deep convolutional neural network is proposed, referred to as Multiple Instance Learning–based Landslide classification (MILL). First, MILL uses a large-scale remote sensing image classification dataset to build pre-train networks for landslide feature extraction. Second, MILL extracts instances and assign instance labels without pixel-level annotations. Third, MILL uses a new channel attention–based MIL pooling function to map instance-level labels to bag-level label. We apply MIL to detect landslides in a loess area. Experimental results demonstrate that MILL is effective in identifying landslides in remote sensing images.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


2021 ◽  
Vol 13 (5) ◽  
pp. 869
Author(s):  
Zheng Zhuo ◽  
Zhong Zhou

In recent years, the amount of remote sensing imagery data has increased exponentially. The ability to quickly and effectively find the required images from massive remote sensing archives is the key to the organization, management, and sharing of remote sensing image information. This paper proposes a high-resolution remote sensing image retrieval method with Gabor-CA-ResNet and a split-based deep feature transform network. The main contributions include two points. (1) For the complex texture, diverse scales, and special viewing angles of remote sensing images, A Gabor-CA-ResNet network taking ResNet as the backbone network is proposed by using Gabor to represent the spatial-frequency structure of images, channel attention (CA) mechanism to obtain stronger representative and discriminative deep features. (2) A split-based deep feature transform network is designed to divide the features extracted by the Gabor-CA-ResNet network into several segments and transform them separately for reducing the dimensionality and the storage space of deep features significantly. The experimental results on UCM, WHU-RS, RSSCN7, and AID datasets show that, compared with the state-of-the-art methods, our method can obtain competitive performance, especially for remote sensing images with rare targets and complex textures.


Sign in / Sign up

Export Citation Format

Share Document