Structure Fault Tolerance of Recursive Interconnection Networks

2020 ◽  
Author(s):  
Eminjan Sabir ◽  
Jixiang Meng

Abstract Motivated by effects caused by structure link faults in networks, we study the following graph theoretical problem. Let $T$ be a connected subgraph of a graph $G$ except for $K_{1}$. The $T$-structure edge-connectivity $\lambda (G;T)$ (resp. $T$-substructure edge-connectivity $\lambda ^s(G;T)$) of $G$ is the minimum cardinality of a set of edge-disjoint subgraphs $\mathcal{F}=\{T_{1},T_{2},...,T_{m}\}$ (resp. $\mathcal{F}=\{T_{1}^{^{\prime}},T_{2}^{^{\prime}},...,T_{m}^{^{\prime}}\}$) such that $T_{i}$ is isomorphic to $T$ (resp. $T_{i}^{^{\prime}}$ is a connected subgraph of $T$) for every $1 \le i \le m $, and $E(\mathcal{F})$’s removal leaves the remaining graph disconnected. In this paper, we determine both $\lambda (G;T)$ and $\lambda ^{s}(G;T)$ for $(1)$ the hypercube $Q_{n}$ and $T\in \{K_{1,1},K_{1,2},K_{1,3},P_{4},Q_{1},Q_{2},Q_{3}\}$; $(2)$ the $k$-ary $n$-cube $Q^{k}_{n}$$(k\ge 3)$ and $T\in \{K_{1,1},K_{1,2},K_{1,3},Q^{3}_{1},Q^{4}_{1}\}$; $(3)$ the balanced hypercube $BH_{n}$ and $T\in \{K_{1,1},K_{1,2},BH_{1}\}$. We also extend some results in Lin, C.-K., Zhang, L., Fan, J. and Wang, D. (2016, Structure connectivity and substructure connectivity of hypercubes. Theor. Comput. Sci., 634, 97–107) and Lv, Y., Fan, J., Hsu, D.F. and Lin, C.-K. (2018, Structure connectivity and substructure connectivity of $k$-ary $n$-cubes. Inf. Sci., 433, 115–124).

2020 ◽  
Author(s):  
Eminjan Sabir ◽  
Jixiang Meng

Abstract Motivated by effects caused by structure link faults in networks, we study the following graph theoretical problem. Let $T$ be a connected subgraph of a graph $G$ except for $K_{1}$. The $T$-structure edge-connectivity $\lambda (G;T)$ (resp. $T$-substructure edge-connectivity $\lambda ^s(G;T)$) of $G$ is the minimum cardinality of a set of edge-disjoint subgraphs $\mathcal{F}=\{T_{1},T_{2},\ldots ,T_{m}\}$ (resp. $\mathcal{F}=\{T_{1}^{^{\prime}},T_{2}^{^{\prime}},\ldots ,T_{m}^{^{\prime}}\}$) such that $T_{i}$ is isomorphic to $T$ (resp. $T_{i}^{^{\prime}}$ is a connected subgraph of $T$) for every $1 \le i \le m$, and $E(\mathcal{F})$’s removal leaves the remaining graph disconnected. In this paper, we determine both $\lambda (G;T)$ and $\lambda ^{s}(G;T)$ for $(1)$ the hypercube $Q_{n}$ and $T\in \{K_{1,1},K_{1,2},K_{1,3},P_{4},Q_{1},Q_{2},Q_{3}\}$; $(2)$ the $k$-ary $n$-cube $Q^{k}_{n}$$(k\ge 3)$ and $T\in \{K_{1,1},K_{1,2},K_{1,3},Q^{3}_{1},Q^{4}_{1}\}$; $(3)$ the balanced hypercube $BH_{n}$ and $T\in \{K_{1,1},K_{1,2},BH_{1}\}$. We also extend some known results.


2018 ◽  
Vol 29 (06) ◽  
pp. 995-1001 ◽  
Author(s):  
Shuli Zhao ◽  
Weihua Yang ◽  
Shurong Zhang ◽  
Liqiong Xu

Fault tolerance is an important issue in interconnection networks, and the traditional edge connectivity is an important measure to evaluate the robustness of an interconnection network. The component edge connectivity is a generalization of the traditional edge connectivity. The [Formula: see text]-component edge connectivity [Formula: see text] of a non-complete graph [Formula: see text] is the minimum number of edges whose deletion results in a graph with at least [Formula: see text] components. Let [Formula: see text] be an integer and [Formula: see text] be the decomposition of [Formula: see text] such that [Formula: see text] and [Formula: see text] for [Formula: see text]. In this note, we determine the [Formula: see text]-component edge connectivity of the hypercube [Formula: see text], [Formula: see text] for [Formula: see text]. Moreover, we classify the corresponding optimal solutions.


2021 ◽  
Author(s):  
Lina Ba ◽  
Heping Zhang

Abstract As a generalization of vertex connectivity, for connected graphs $G$ and $T$, the $T$-structure connectivity $\kappa (G; T)$ (resp. $T$-substructure connectivity $\kappa ^{s}(G; T)$) of $G$ is the minimum cardinality of a set of subgraphs $F$ of $G$ that each is isomorphic to $T$ (resp. to a connected subgraph of $T$) so that $G-F$ is disconnected. For $n$-dimensional hypercube $Q_{n}$, Lin et al. showed $\kappa (Q_{n};K_{1,1})=\kappa ^{s}(Q_{n};K_{1,1})=n-1$ and $\kappa (Q_{n};K_{1,r})=\kappa ^{s}(Q_{n};K_{1,r})=\lceil \frac{n}{2}\rceil $ for $2\leq r\leq 3$ and $n\geq 3$ (Lin, C.-K., Zhang, L.-L., Fan, J.-X. and Wang, D.-J. (2016) Structure connectivity and substructure connectivity of hypercubes. Theor. Comput. Sci., 634, 97–107). Sabir et al. obtained that $\kappa (Q_{n};K_{1,4})=\kappa ^{s}(Q_{n};K_{1,4})= \lceil \frac{n}{2}\rceil $ for $n\geq 6$ and for $n$-dimensional folded hypercube $FQ_{n}$, $\kappa (FQ_{n};K_{1,1})=\kappa ^{s}(FQ_{n};K_{1,1})=n$, $\kappa (FQ_{n};K_{1,r})=\kappa ^{s}(FQ_{n};K_{1,r})= \lceil \frac{n+1}{2}\rceil $ with $2\leq r\leq 3$ and $n\geq 7$ (Sabir, E. and Meng, J.(2018) Structure fault tolerance of hypercubes and folded hypercubes. Theor. Comput. Sci., 711, 44–55). They proposed an open problem of determining $K_{1,r}$-structure connectivity of $Q_n$ and $FQ_n$ for general $r$. In this paper, we obtain that for each integer $r\geq 2$, $\kappa (Q_{n};K_{1,r})$  $=\kappa ^{s}(Q_{n};K_{1,r})$  $=\lceil \frac{n}{2}\rceil $ and $\kappa (FQ_{n};K_{1,r})=\kappa ^{s}(FQ_{n};K_{1,r})= \lceil \frac{n+1}{2}\rceil $ for all integers $n$ larger than $r$ in quare scale. For $4\leq r\leq 6$, we separately confirm the above result holds for $Q_n$ in the remaining cases.


2010 ◽  
Vol 02 (02) ◽  
pp. 143-150
Author(s):  
CHUNXIANG WANG

The super edge-connectivity λ′ of a connected graph G is the minimum cardinality of an edge-cut F in G such that every component of G–F contains at least two vertices. Let two connected graphs Gm and Gp have m and p vertices, minimum degree δ(Gm) and δ(Gp), edge-connectivity λ(Gm) and λ(Gp), respectively. This paper shows that min {pλ(Gm), λ(Gp) + δ(Gm), δ(Gm)(λ(Gp) + 1), (δ(Gm) + 1)λ(Gp)} ≤ λ(Gm * Gp) ≤ δ(Gm) + δ(Gp), where the product graph Gm * Gp of two given graphs Gm and Gp, defined by J. C. Bermond et al. [J. Combin. Theory B36 (1984) 32–48] in the context of the so-called (△, D)-problem, is one interesting model in the design of large reliable networks. Moreover, this paper determines λ′(Gm * Gp) ≤ min {pδ(Gm), ξ(Gp) + 2δ(Gm)} and λ′(G1 ⊕ G2) ≥ min {n, λ1 + λ2} if δ1 = δ2.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Shiying Wang ◽  
Mujiangshan Wang

Mass data processing and complex problem solving have higher and higher demands for performance of multiprocessor systems. Many multiprocessor systems have interconnection networks as underlying topologies. The interconnection network determines the performance of a multiprocessor system. The network is usually represented by a graph where nodes (vertices) represent processors and links (edges) represent communication links between processors. For the network G, two vertices u and v of G are said to be connected if there is a (u,v)-path in G. If G has exactly one component, then G is connected; otherwise G is disconnected. In the system where the processors and their communication links to each other are likely to fail, it is important to consider the fault tolerance of the network. For a connected network G=(V,E), its inverse problem is that G-F is disconnected, where F⊆V or F⊆E. The connectivity or edge connectivity is the minimum number of F. Connectivity plays an important role in measuring the fault tolerance of the network. As a topology structure of interconnection networks, the expanded k-ary n-cube XQnk has many good properties. In this paper, we prove that (1) XQnk is super edge-connected (n≥3); (2) the restricted edge connectivity of XQnk is 8n-2 (n≥3); (3) XQnk is super restricted edge-connected (n≥3).


Author(s):  
Mingzu Zhang ◽  
Xiaoli Yang ◽  
Xiaomin He ◽  
Zhuangyan Qin ◽  
Yongling Ma

The [Formula: see text]-dimensional augmented cube [Formula: see text], proposed by Choudum and Sunitha in 2002, is one of the most famous interconnection networks of the distributed parallel system. Reliability evaluation of underlying topological structures is vital for fault tolerance analysis of this system. As one of the most extensively studied parameters, the [Formula: see text]-conditional edge-connectivity of a connected graph [Formula: see text], [Formula: see text], is defined as the minimum number of the cardinality of the edge-cut of [Formula: see text], if exists, whose removal disconnects this graph and keeps each component of [Formula: see text] having minimum degree at least [Formula: see text]. Let [Formula: see text], [Formula: see text] and [Formula: see text] be three integers, where [Formula: see text], if [Formula: see text] and [Formula: see text], if [Formula: see text]. In this paper, we determine the exact value of the [Formula: see text]-conditional edge-connectivity of [Formula: see text], [Formula: see text] for each positive integer [Formula: see text] and [Formula: see text], and give an affirmative answer to Shinde and Borse’s corresponding conjecture on this topic in [On edge-fault tolerance in augmented cubes, J. Interconnection Netw. 20(4) (2020), DOI:10.1142/S0219265920500139].


2017 ◽  
Vol 17 (02) ◽  
pp. 1750006 ◽  
Author(s):  
YUNXIA REN ◽  
SHIYING WANG

Connectivity plays an important role in measuring the fault tolerance of an interconnection network [Formula: see text]. A faulty set [Formula: see text] is called a g-extra faulty set if every component of G − F has more than g nodes. A g-extra cut of G is a g-extra faulty set F such that G − F is disconnected. The minimum cardinality of g-extra cuts is said to be the g-extra connectivity of G. G is super g-extra connected if every minimum g-extra cut F of G isolates one connected subgraph of order g + 1. If, in addition, G − F has two components, one of which is the connected subgraph of order g + 1, then G is tightly [Formula: see text] super g-extra connected. Diagnosability is an important metric for measuring the reliability of G. A new measure for fault diagnosis of G restrains that every fault-free component has at least (g + 1) fault-free nodes, which is called the g-extra diagnosability of G. The locally twisted cube LTQn is applied widely. In this paper, it is proved that LTQn is tightly (3n − 5) super 2-extra connected for [Formula: see text], and the 2-extra diagnosability of LTQn is 3n − 3 under the PMC model ([Formula: see text]) and MM* model ([Formula: see text]).


Author(s):  
Yihong Wang ◽  
Cheng-Kuan Lin ◽  
Shuming Zhou ◽  
Tao Tian

Large scale multiprocessor systems or multicomputer systems, taking interconnection networks as underlying topologies, have been widely used in the big data era. Fault tolerance is becoming an essential attribute in multiprocessor systems as the number of processors is getting larger. A connected graph [Formula: see text] is called strong Menger (edge) connected if, for any two distinct vertices [Formula: see text] and [Formula: see text], there are [Formula: see text] vertex (edge)-disjoint paths between them. Exchanged hypercube [Formula: see text], as a variant of hypercube [Formula: see text], remains lots of preferable fault tolerant properties of hypercube. In this paper, we show that [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text] are strong Menger (edge) connected, respectively. Moreover, as a by-product, for dual cube [Formula: see text], one popular generalization of hypercube, [Formula: see text] is also showed to be strong Menger (edge) connected, where [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document