scholarly journals The Star-Structure Connectivity and Star-Substructure Connectivity of Hypercubes and Folded Hypercubes

2021 ◽  
Author(s):  
Lina Ba ◽  
Heping Zhang

Abstract As a generalization of vertex connectivity, for connected graphs $G$ and $T$, the $T$-structure connectivity $\kappa (G; T)$ (resp. $T$-substructure connectivity $\kappa ^{s}(G; T)$) of $G$ is the minimum cardinality of a set of subgraphs $F$ of $G$ that each is isomorphic to $T$ (resp. to a connected subgraph of $T$) so that $G-F$ is disconnected. For $n$-dimensional hypercube $Q_{n}$, Lin et al. showed $\kappa (Q_{n};K_{1,1})=\kappa ^{s}(Q_{n};K_{1,1})=n-1$ and $\kappa (Q_{n};K_{1,r})=\kappa ^{s}(Q_{n};K_{1,r})=\lceil \frac{n}{2}\rceil $ for $2\leq r\leq 3$ and $n\geq 3$ (Lin, C.-K., Zhang, L.-L., Fan, J.-X. and Wang, D.-J. (2016) Structure connectivity and substructure connectivity of hypercubes. Theor. Comput. Sci., 634, 97–107). Sabir et al. obtained that $\kappa (Q_{n};K_{1,4})=\kappa ^{s}(Q_{n};K_{1,4})= \lceil \frac{n}{2}\rceil $ for $n\geq 6$ and for $n$-dimensional folded hypercube $FQ_{n}$, $\kappa (FQ_{n};K_{1,1})=\kappa ^{s}(FQ_{n};K_{1,1})=n$, $\kappa (FQ_{n};K_{1,r})=\kappa ^{s}(FQ_{n};K_{1,r})= \lceil \frac{n+1}{2}\rceil $ with $2\leq r\leq 3$ and $n\geq 7$ (Sabir, E. and Meng, J.(2018) Structure fault tolerance of hypercubes and folded hypercubes. Theor. Comput. Sci., 711, 44–55). They proposed an open problem of determining $K_{1,r}$-structure connectivity of $Q_n$ and $FQ_n$ for general $r$. In this paper, we obtain that for each integer $r\geq 2$, $\kappa (Q_{n};K_{1,r})$  $=\kappa ^{s}(Q_{n};K_{1,r})$  $=\lceil \frac{n}{2}\rceil $ and $\kappa (FQ_{n};K_{1,r})=\kappa ^{s}(FQ_{n};K_{1,r})= \lceil \frac{n+1}{2}\rceil $ for all integers $n$ larger than $r$ in quare scale. For $4\leq r\leq 6$, we separately confirm the above result holds for $Q_n$ in the remaining cases.

Filomat ◽  
2015 ◽  
Vol 29 (8) ◽  
pp. 1781-1788 ◽  
Author(s):  
Ismael Yero ◽  
Juan Rodríguez-Velázquez

A set of vertices S of a graph G is a geodetic set of G if every vertex v ? S lies on a shortest path between two vertices of S. The minimum cardinality of a geodetic set of G is the geodetic number of G and it is denoted by 1(G). A Steiner set of G is a set of vertices W of G such that every vertex of G belongs to the set of vertices of a connected subgraph of minimum size containing the vertices of W. The minimum cardinality of a Steiner set of G is the Steiner number of G and it is denoted by s(G). Let G and H be two graphs and let n be the order of G. The corona product G ? H is defined as the graph obtained from G and H by taking one copy of G and n copies of H and joining by an edge each vertex from the ith-copy of H to the ith-vertex of G. We study the geodetic number and the Steiner number of corona product graphs. We show that if G is a connected graph of order n ? 2 and H is a non complete graph, then g(G ? H) ? s(G ? H), which partially solve the open problem presented in [Discrete Mathematics 280 (2004) 259-263] related to characterize families of graphs G satisfying that g(G) ? s(G).


2020 ◽  
Author(s):  
Eminjan Sabir ◽  
Jixiang Meng

Abstract Motivated by effects caused by structure link faults in networks, we study the following graph theoretical problem. Let $T$ be a connected subgraph of a graph $G$ except for $K_{1}$. The $T$-structure edge-connectivity $\lambda (G;T)$ (resp. $T$-substructure edge-connectivity $\lambda ^s(G;T)$) of $G$ is the minimum cardinality of a set of edge-disjoint subgraphs $\mathcal{F}=\{T_{1},T_{2},\ldots ,T_{m}\}$ (resp. $\mathcal{F}=\{T_{1}^{^{\prime}},T_{2}^{^{\prime}},\ldots ,T_{m}^{^{\prime}}\}$) such that $T_{i}$ is isomorphic to $T$ (resp. $T_{i}^{^{\prime}}$ is a connected subgraph of $T$) for every $1 \le i \le m$, and $E(\mathcal{F})$’s removal leaves the remaining graph disconnected. In this paper, we determine both $\lambda (G;T)$ and $\lambda ^{s}(G;T)$ for $(1)$ the hypercube $Q_{n}$ and $T\in \{K_{1,1},K_{1,2},K_{1,3},P_{4},Q_{1},Q_{2},Q_{3}\}$; $(2)$ the $k$-ary $n$-cube $Q^{k}_{n}$$(k\ge 3)$ and $T\in \{K_{1,1},K_{1,2},K_{1,3},Q^{3}_{1},Q^{4}_{1}\}$; $(3)$ the balanced hypercube $BH_{n}$ and $T\in \{K_{1,1},K_{1,2},BH_{1}\}$. We also extend some known results.


2020 ◽  
Author(s):  
Eminjan Sabir ◽  
Jixiang Meng

Abstract Motivated by effects caused by structure link faults in networks, we study the following graph theoretical problem. Let $T$ be a connected subgraph of a graph $G$ except for $K_{1}$. The $T$-structure edge-connectivity $\lambda (G;T)$ (resp. $T$-substructure edge-connectivity $\lambda ^s(G;T)$) of $G$ is the minimum cardinality of a set of edge-disjoint subgraphs $\mathcal{F}=\{T_{1},T_{2},...,T_{m}\}$ (resp. $\mathcal{F}=\{T_{1}^{^{\prime}},T_{2}^{^{\prime}},...,T_{m}^{^{\prime}}\}$) such that $T_{i}$ is isomorphic to $T$ (resp. $T_{i}^{^{\prime}}$ is a connected subgraph of $T$) for every $1 \le i \le m $, and $E(\mathcal{F})$’s removal leaves the remaining graph disconnected. In this paper, we determine both $\lambda (G;T)$ and $\lambda ^{s}(G;T)$ for $(1)$ the hypercube $Q_{n}$ and $T\in \{K_{1,1},K_{1,2},K_{1,3},P_{4},Q_{1},Q_{2},Q_{3}\}$; $(2)$ the $k$-ary $n$-cube $Q^{k}_{n}$$(k\ge 3)$ and $T\in \{K_{1,1},K_{1,2},K_{1,3},Q^{3}_{1},Q^{4}_{1}\}$; $(3)$ the balanced hypercube $BH_{n}$ and $T\in \{K_{1,1},K_{1,2},BH_{1}\}$. We also extend some results in Lin, C.-K., Zhang, L., Fan, J. and Wang, D. (2016, Structure connectivity and substructure connectivity of hypercubes. Theor. Comput. Sci., 634, 97–107) and Lv, Y., Fan, J., Hsu, D.F. and Lin, C.-K. (2018, Structure connectivity and substructure connectivity of $k$-ary $n$-cubes. Inf. Sci., 433, 115–124).


2017 ◽  
Vol 17 (02) ◽  
pp. 1750006 ◽  
Author(s):  
YUNXIA REN ◽  
SHIYING WANG

Connectivity plays an important role in measuring the fault tolerance of an interconnection network [Formula: see text]. A faulty set [Formula: see text] is called a g-extra faulty set if every component of G − F has more than g nodes. A g-extra cut of G is a g-extra faulty set F such that G − F is disconnected. The minimum cardinality of g-extra cuts is said to be the g-extra connectivity of G. G is super g-extra connected if every minimum g-extra cut F of G isolates one connected subgraph of order g + 1. If, in addition, G − F has two components, one of which is the connected subgraph of order g + 1, then G is tightly [Formula: see text] super g-extra connected. Diagnosability is an important metric for measuring the reliability of G. A new measure for fault diagnosis of G restrains that every fault-free component has at least (g + 1) fault-free nodes, which is called the g-extra diagnosability of G. The locally twisted cube LTQn is applied widely. In this paper, it is proved that LTQn is tightly (3n − 5) super 2-extra connected for [Formula: see text], and the 2-extra diagnosability of LTQn is 3n − 3 under the PMC model ([Formula: see text]) and MM* model ([Formula: see text]).


2019 ◽  
Vol 63 (9) ◽  
pp. 1372-1384
Author(s):  
Zuwen Luo ◽  
Liqiong Xu

Abstract Let $G=(V(G), E(G))$ be a connected graph. A subset $T \subseteq V(G)$ is called an $R^{k}$-vertex-cut, if $G-T$ is disconnected and each vertex in $V(G)-T$ has at least $k$ neighbors in $G-T$. The cardinality of a minimum $R^{k}$-vertex-cut is the $R^{k}$-vertex-connectivity of $G$ and is denoted by $\kappa ^{k}(G)$. $R^{k}$-vertex-connectivity is a new measure to study the fault tolerance of network structures beyond connectivity. In this paper, we study $R^{1}$-vertex-connectivity and $R^{2}$-vertex-connectivity of Cayley graphs generated by wheel graphs, which are denoted by $AW_{n}$, and show that $\kappa ^{1}(AW_{n})=4n-7$ for $n\geq 6$; $\kappa ^{2}(AW_{n})=6n-12$ for $n\geq 6$.


2016 ◽  
Vol 08 (02) ◽  
pp. 1650022
Author(s):  
Zhenhua Liu ◽  
Zhao Zhang

For a strongly connected digraph [Formula: see text], an arc-cut [Formula: see text] is a [Formula: see text]-restricted arc-cut of [Formula: see text] if [Formula: see text] has at least two strong components of order at least [Formula: see text]. The [Formula: see text]-restricted arc-connectivity [Formula: see text] is the minimum cardinality of all [Formula: see text]-restricted arc-cuts. The [Formula: see text]-restricted vertex-connectivity [Formula: see text] can be defined similarly. In this paper, we provide upper and lower bounds for [Formula: see text] and [Formula: see text] for the total digraph [Formula: see text] of [Formula: see text].


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Young Chel Kwun ◽  
Hafiz Mutee ur Rehman ◽  
Muhammad Yousaf ◽  
Waqas Nazeer ◽  
Shin Min Kang

The aim of this report to solve the open problem suggested by Chen et al. We study the graph entropy with ABC edge weights and present bounds of it for connected graphs, regular graphs, complete bipartite graphs, chemical graphs, tree, unicyclic graphs, and star graphs. Moreover, we compute the graph entropy for some families of dendrimers.


2017 ◽  
Vol 32 ◽  
pp. 438-446 ◽  
Author(s):  
Dan Li ◽  
Guoping Wang ◽  
Jixiang Meng

Let \eta(G) denote the distance signless Laplacian spectral radius of a connected graph G. In this paper,bounds for the distance signless Laplacian spectral radius of connected graphs are given, and the extremal graph with the minimal distance signless Laplacian spectral radius among the graphs with given vertex connectivity and minimum degree is determined. Furthermore, the digraph that minimizes the distance signless Laplacian spectral radius with given vertex connectivity is characterized.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
T. Asir

A subset D of the vertex set of a graph G, is a dominating set if every vertex in V−D is adjacent to at least one vertex in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A subset of V−D, which is also a dominating set of G is called an inverse dominating set of G with respect to D. The inverse domination number γ′(G) is the minimum cardinality of the inverse dominating sets. Domke et al. (2004) characterized connected graphs G with γ(G)+γ′(G)=n, where n is the number of vertices in G. It is the purpose of this paper to give a complete characterization of graphs G with minimum degree at least two and γ(G)+γ′(G)=n−1.


2015 ◽  
Vol 15 (01n02) ◽  
pp. 1550007 ◽  
Author(s):  
EDDIE CHENG ◽  
KE QIU ◽  
ZHIZHANG SHEN

We propose the complete cubic network structure to extend the existing class of hierarchical cubic networks, and establish a general connectivity result which states that the surviving graph of a complete cubic network, when a linear number of vertices are removed, consists of a large (connected) component and a number of smaller components which altogether contain a limited number of vertices. As applications, we characterize several fault-tolerance properties for the complete cubic network, including its restricted connectivity, i.e., the size of a minimum vertex cut such that the degree of every vertex in the surviving graph has a guaranteed lower bound; its cyclic vertex-connectivity, i.e., the size of a minimum vertex cut such that at least two components in the surviving graph contain a cycle; its component connectivity, i.e., the size of a minimum vertex cut whose removal leads to a certain number of components in its surviving graph; and its conditional diagnosability, i.e., the maximum number of faulty vertices that can be detected via a self-diagnostic process, in terms of the common Comparison Diagnosis model.


Sign in / Sign up

Export Citation Format

Share Document