scholarly journals The Ensembl gene annotation system

Database ◽  
2016 ◽  
Vol 2016 ◽  
pp. baw093 ◽  
Author(s):  
Bronwen L. Aken ◽  
Sarah Ayling ◽  
Daniel Barrell ◽  
Laura Clarke ◽  
Valery Curwen ◽  
...  
2004 ◽  
Vol 14 (5) ◽  
pp. 942-950 ◽  
Author(s):  
V. Curwen

2012 ◽  
Vol 10 (1) ◽  
pp. 33 ◽  
Author(s):  
Young-Kyu Park ◽  
Tae-Wook Kang ◽  
Su-Jin Baek ◽  
Kwon-Il Kim ◽  
Seon-Young Kim ◽  
...  

2019 ◽  
Vol 35 (21) ◽  
pp. 4427-4429 ◽  
Author(s):  
Andrea Ghelfi ◽  
Kenta Shirasawa ◽  
Hideki Hirakawa ◽  
Sachiko Isobe

Abstract Summary Hayai-Annotation Plants is a browser-based interface for an ultra-fast and accurate functional gene annotation system for plant species using R. The pipeline combines the sequence-similarity searches, using USEARCH against UniProtKB (taxonomy Embryophyta), with a functional annotation step. Hayai-Annotation Plants provides five layers of annotation: i) protein name; ii) gene ontology terms consisting of its three main domains (Biological Process, Molecular Function and Cellular Component); iii) enzyme commission number; iv) protein existence level; and v) evidence type. It implements a new algorithm that gives priority to protein existence level to propagate GO and EC information and annotated Arabidopsis thaliana representative peptide sequences (Araport11) within 5 min at the PC level. Availability and implementation The software is implemented in R and runs on Macintosh and Linux systems. It is freely available at https://github.com/kdri-genomics/Hayai-Annotation-Plants under the GPLv3 license. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Author(s):  
Andrea Ghelfi ◽  
Kenta Shirasawa ◽  
Hideki Hirakawa ◽  
Sachiko Isobe

SummaryHayai-Annotation Plants is a browser-based interface for an ultra-fast and accurate gene annotation system for plant species using R. The pipeline combines the sequence-similarity searches, using USEARCH against UniProtKB (taxonomy Embryophyta), with a functional annotation step. Hayai-Annotation Plants provides five layers of annotation: 1) gene name; 2) gene ontology terms consisting of its three main domains (Biological Process, Molecular Function, and Cellular Component); 3) enzyme commission number; 4) protein existence level; 5) and evidence type. In regard to speed and accuracy, Hayai-Annotation Plants annotated Arabidopsis thaliana (Araport11, representative peptide sequences) within five minutes with an accuracy of 96.4 %.Availability and ImplementationThe software is implemented in R and runs on Macintosh and Linux systems. It is freely available at https://github.com/kdri-genomics/Hayai-Annotation-Plants under the GPLv3 license.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Zeeshan Ahmed ◽  
Eduard Gibert Renart ◽  
Saman Zeeshan ◽  
XinQi Dong

Abstract Background Genetic disposition is considered critical for identifying subjects at high risk for disease development. Investigating disease-causing and high and low expressed genes can support finding the root causes of uncertainties in patient care. However, independent and timely high-throughput next-generation sequencing data analysis is still a challenge for non-computational biologists and geneticists. Results In this manuscript, we present a findable, accessible, interactive, and reusable (FAIR) bioinformatics platform, i.e., GVViZ (visualizing genes with disease-causing variants). GVViZ is a user-friendly, cross-platform, and database application for RNA-seq-driven variable and complex gene-disease data annotation and expression analysis with a dynamic heat map visualization. GVViZ has the potential to find patterns across millions of features and extract actionable information, which can support the early detection of complex disorders and the development of new therapies for personalized patient care. The execution of GVViZ is based on a set of simple instructions that users without a computational background can follow to design and perform customized data analysis. It can assimilate patients’ transcriptomics data with the public, proprietary, and our in-house developed gene-disease databases to query, easily explore, and access information on gene annotation and classified disease phenotypes with greater visibility and customization. To test its performance and understand the clinical and scientific impact of GVViZ, we present GVViZ analysis for different chronic diseases and conditions, including Alzheimer’s disease, arthritis, asthma, diabetes mellitus, heart failure, hypertension, obesity, osteoporosis, and multiple cancer disorders. The results are visualized using GVViZ and can be exported as image (PNF/TIFF) and text (CSV) files that include gene names, Ensembl (ENSG) IDs, quantified abundances, expressed transcript lengths, and annotated oncology and non-oncology diseases. Conclusions We emphasize that automated and interactive visualization should be an indispensable component of modern RNA-seq analysis, which is currently not the case. However, experts in clinics and researchers in life sciences can use GVViZ to visualize and interpret the transcriptomics data, making it a powerful tool to study the dynamics of gene expression and regulation. Furthermore, with successful deployment in clinical settings, GVViZ has the potential to enable high-throughput correlations between patient diagnoses based on clinical and transcriptomics data.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 396
Author(s):  
Natrada Mitpuangchon ◽  
Kwan Nualcharoen ◽  
Singtoe Boonrotpong ◽  
Patamarerk Engsontia

Many animal species can produce venom for defense, predation, and competition. The venom usually contains diverse peptide and protein toxins, including neurotoxins, proteolytic enzymes, protease inhibitors, and allergens. Some drugs for cancer, neurological disorders, and analgesics were developed based on animal toxin structures and functions. Several caterpillar species possess venoms that cause varying effects on humans both locally and systemically. However, toxins from only a few species have been investigated, limiting the full understanding of the Lepidoptera toxin diversity and evolution. We used the RNA-seq technique to identify toxin genes from the stinging nettle caterpillar, Parasa lepida (Cramer, 1799). We constructed a transcriptome from caterpillar urticating hairs and reported 34,968 unique transcripts. Using our toxin gene annotation pipeline, we identified 168 candidate toxin genes, including protease inhibitors, proteolytic enzymes, and allergens. The 21 P. lepida novel Knottin-like peptides, which do not show sequence similarity to any known peptide, have predicted 3D structures similar to tarantula, scorpion, and cone snail neurotoxins. We highlighted the importance of convergent evolution in the Lepidoptera toxin evolution and the possible mechanisms. This study opens a new path to understanding the hidden diversity of Lepidoptera toxins, which could be a fruitful source for developing new drugs.


Sign in / Sign up

Export Citation Format

Share Document