molecular function
Recently Published Documents


TOTAL DOCUMENTS

400
(FIVE YEARS 137)

H-INDEX

44
(FIVE YEARS 7)

BMC Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Mickaële Hémono ◽  
Alexandre Haller ◽  
Johana Chicher ◽  
Anne-Marie Duchêne ◽  
Richard Patryk Ngondo

Abstract Background Mitochondria require thousands of proteins to fulfill their essential function in energy production and other fundamental biological processes. These proteins are mostly encoded by the nuclear genome, translated in the cytoplasm before being imported into the organelle. RNA binding proteins (RBPs) are central players in the regulation of this process by affecting mRNA translation, stability, or localization. CLUH is an RBP recognizing specifically mRNAs coding for mitochondrial proteins, but its precise molecular function and interacting partners remain undiscovered in mammals. Results Here we reveal for the first time CLUH interactome in mammalian cells. Using both co-IP and BioID proximity-labeling approaches, we identify novel molecular partners interacting stably or transiently with CLUH in HCT116 cells and mouse embryonic stem cells. We reveal stable RNA-independent interactions of CLUH with itself and with SPAG5 in cytosolic granular structures. More importantly, we uncover an unexpected proximity of CLUH to mitochondrial proteins and their cognate mRNAs in the cytosol. We show that this interaction occurs during the process of active translation and is dependent on CLUH TPR domain. Conclusions Overall, through the analysis of CLUH interactome, our study sheds a new light on CLUH molecular function by revealing new partners and by highlighting its link to the translation and subcellular localization of some mRNAs coding for mitochondrial proteins.


Animals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 119
Author(s):  
Hongyan Ren ◽  
Haoyuan Zhang ◽  
Zaidong Hua ◽  
Zhe Zhu ◽  
Jiashu Tao ◽  
...  

The intramuscular fat is a major quality trait of meat, affecting sensory attributes such as flavor and texture. Several previous GWAS studies identified Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) gene as the candidate gene to regulate intramuscular fat content in different pig populations, but the underlying molecular function of ACSL4 in adipogenesis within pig skeletal muscle is not fully investigated. In this study, we isolated porcine endogenous intramuscular adipocyte progenitors and performed ACSL4 loss- and gain-of-function experiments during adipogenic differentiation. Our data showed that ACSL4 is a positive regulator of adipogenesis in intramuscular fat cells isolated from pigs. More interestingly, the enhanced expression of ACSL4 in pig intramuscular adipocytes could increase the cellular content of monounsaturated and polyunsaturated fatty acids, such as gamma-L eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA). The above results not only confirmed the function of ACSL4 in pig intramuscular adipogenesis and meat quality attributes, but also provided new clues for the improvement of the nutritional value of pork for human health.


2021 ◽  
Author(s):  
Lauren E. Colbert

Abstract Background Gut microbiome community composition differs between cervical cancer (CC) patients and healthy controls, and increased gut diversity is associated with improved outcomes after treatment. We proposed that functions of specific microbial species adjoining the mucus layer may directly impact the biology of CC. Results In this study, we examined metagenomes of rectal swabs in 41 CC patients using whole-genome shotgun sequencing and found a significant association between molecular functions encoded by the metagenomes with markers of aggressive cancer including initial tumor size and stage. Profiling of the molecular function abundances and their distributions identified 2 microbial communities co-existing in each metagenome but with distinct metabolism and taxonomic structures. Community A (Clostridia and Proteobacteria predominant) was characterized by high activity of pathways involved in stress response, mucus glycan degradation and utilization of degradation byproducts. This community was prevalent in larger, advanced stage tumors. Conversely, community B (Bacteroidia predominant) was characterized by fast growth, active oxidative phosphorylation, and production of vitamins. This community was prevalent in small, early-stage tumors. Conclusions Based on these results, we propose that increased mucus layer degradation is associated with a more aggressive cervical cancer phenotype.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tianhong Wang ◽  
Tongxuan Wang ◽  
Meng Zhang ◽  
Xinyue Shi ◽  
Miao Zhang ◽  
...  

The tick Haemaphysalis longicornis has two reproductive groups: a bisexual group (HLBP) and a parthenogenetic group (HLPP). The comparative molecular regulation of ovarian development in these two groups is unexplored. We conducted transcriptome sequencing and quantitative proteomics on the ovaries of HLBP and HLPP, in different feeding stages, to evaluate the molecular function of genes associated with ovarian development. The ovarian tissues of HLBP and HLPP were divided into three feeding stages (early-fed, partially-fed and engorged). A total of 87,233 genes and 2,833 proteins were annotated in the ovary of H. longicornis in the different feeding stages. The differentially expressed genes (DEGs) of functional pathway analysis indicated that Lysosome, MAPK Signaling Pathway, Phagosome, Regulation of Actin Cytoskeleton, Endocytosis, Apoptosis, Insulin Signaling Pathway, Oxidative Phosphorylation, and Sphingolipid Metabolism were most abundant in the ovary of H. longicornis in the different feeding stages. Comparing the DEGs between HLBP and HLPP revealed that the ABC Transporter, PI3K-Akt Signaling Pathway and cAMP Signaling Pathway were the most enriched and suggested that the functions of signal transduction mechanisms may have changed during ovarian development. The functions of the annotated proteome of ovarian tissues were strongly correlated with the transcriptome annotation results, and these were further validated using quantitative polymerase chain reaction (qPCR). In the HLBP, the expression of cathepsin L, secreted proteins and glycosidase proteins was significantly up-regulated during feeding stages. In the HLPP, the lysozyme, yolk proteins, heat shock protein, glutathione S transferase, myosin and ATP synthase proteins were up-regulated during feeding stages. The significant differences of the gene expression between HLBP and HLPP indicated that variations in the genetic background and molecular function might exist in the two groups. These results provide a foundation for understanding the molecular mechanism and exploring the functions of genes in the ovarian development of different reproductive groups of H. longicornis.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Ana Cláudia Raposo ◽  
Carlito Lebrilla ◽  
Ricardo Wagner Portela ◽  
Gege Xu ◽  
Arianne Pontes Oriá

Abstract Background Glycoproteins are important tear components that participate in the stability of the ocular surface. However, the glycopeptides that are present in the tears of wild animals have not yet been described. This work aimed to describe the glycoproteomic profile of roadside hawk (Rupornis magnirostris) and caiman (Caiman latirostris) tears. Methods Tears collected from 10 hawks and 70 caimans using Schirmer tear test strips were used in this study. The samples were submitted to trypsin digestion and separated using a reverse-phase column coupled to a mass spectrometer associated to a nanospray ionization source. The glycoproteins were categorized as: cellular components, biological processes and molecular function, according to the UniProt Knowledgebase. Results As shown by the liquid chromatography–mass spectrometry, all glycopeptides found were classified as N-type. Of the 51 glycoproteins that were identified in the hawk tear film, the most abundant were ovotransferrin, globulins and complement system proteins. In the caiman tear film, 29 glycoproteins were identified. The most abundant caiman glycoproteins were uncharacterized proteins, ATPases, globulins and proteasome components. Ontological characterization revealed that the glycoproteins were extracellular, and the most identified molecular function was endopeptidase activity for both species. Conclusion Glycoproteins are abundant in the tear film of the bird and reptile species studied herein, and all these molecules were shown to have N-type modifications. Location at the extracellular space and an endopeptidase inhibitor activity were the main cell component and molecular function for both species, respectively. These profiles showed differences when compared to human tears, are possibly linked to adaptive processes and can be the basis for further studies on the search of disease biomarkers.


2021 ◽  
Author(s):  
Maarten L Hekkelman ◽  
Ida de de Vries ◽  
Robbie P Joosten ◽  
Anastassis Perrakis

Artificial intelligence (AI) methods for constructing structural models of proteins on the basis of their sequence are having a transformative effect in biomolecular sciences. The AlphaFold protein structure database makes available hundreds of thousands of protein structures. However, all these structures lack cofactors essential for their structural integrity and molecular function (e.g. hemoglobin lacks a bound heme), key ions essential for structural integrity (e.g. zinc-finger motifs) or catalysis (e.g. Ca2+ or Zn2+ in metalloproteases), and ligands that are important for biological function (e.g. kinase structures lack ADP or ATP). Here, we present AlphaFill, an algorithm based on sequence and structure similarity, to "transplant" such "missing" small molecules and ions from experimentally determined structures to predicted protein models. These publicly available structural annotations are mapped to predicted protein models, to help scientists interpret biological function and design experiments.


2021 ◽  
Vol 12 (10) ◽  
pp. 1-19
Author(s):  
Dr. Zelalem Kiros Bitsue

The human immunodeficiency virus (HIV) genome encodes a total of three structural proteins, two envelope proteins, three enzymes, and six accessory proteins. Three-dimensional molecular structures can provide detailed information on biological mechanisms and, for cases in which the molecular function affects human health, can significantly aid in the development of therapeutic interventions.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2870
Author(s):  
Sonia Sonda ◽  
Diana Pendin ◽  
Andrea Daga

The endoplasmic reticulum (ER) is the most abundant and widespread organelle in cells. Its peculiar membrane architecture, formed by an intricate network of tubules and cisternae, is critical to its multifaceted function. Regulation of ER morphology is coordinated by a few ER-specific membrane proteins and is thought to be particularly important in neurons, where organized ER membranes are found even in the most distant neurite terminals. Mutation of ER-shaping proteins has been implicated in the neurodegenerative disease hereditary spastic paraplegia (HSP). In this review we discuss the involvement of these proteins in the pathogenesis of HSP, focusing on the experimental evidence linking their molecular function to disease onset. Although the precise biochemical activity of some ER-related HSP proteins has been elucidated, the pathological mechanism underlying ER-linked HSP is still undetermined and needs to be further investigated.


Sign in / Sign up

Export Citation Format

Share Document