cancer gene
Recently Published Documents


TOTAL DOCUMENTS

1999
(FIVE YEARS 300)

H-INDEX

81
(FIVE YEARS 9)

Author(s):  
P Kamala Kumari ◽  
Joseph Beatrice Seventline

Mutated genes are one of the prominent factors in origination and spread of cancer disease. Here we have used Genomic signal processing methods to identify the patterns that differentiate cancer and non-cancerous genes. Furthermore, Deep learning algorithms were used to model a system that automatically predicts the cancer gene. Unlike the existing methods, two feature extraction modules are deployed to extract six attributes. Power Spectral Density based module was used to extract statistical parameters like Mean, Median, Standard deviation, Mean Deviation and Median Deviation. Adaptive Functional Link Network (AFLN) based filter module was used to extract Normalized Mean Square Error (NMSE). The uniqueness of this paper is identification of six input features that differentiates cancer genes. In this work artificial neural network is developed to predict cancer genes. Comparison is done on three sets of datasets with 6 attributes, 5 attributes and one attribute. We performed all the training and testing on the Tensorflow using the Keras library in Python using Google Colab. The developed approach proved its efficiency with 6 attributes attaining an accuracy of 98% for 150 epochs. The ANN model was also compared with existing work and attained a 10 fold cross validation accuracy of 96.26% with an increase of 1.2%.


2022 ◽  
Author(s):  
Yohei Harada ◽  
Akemi Sato ◽  
Mitsugu Araki ◽  
Shigeyuki Matsumoto ◽  
Yuta Isaka ◽  
...  

Abstract Purpose Dealing with variants of unknown significance (VUS) is an important issue in the clinical application of NGS-based cancer gene panel tests. We detected a novel ERBB2 extracellular domain VUS, c.1157A > G p.(E401G), in a cancer gene panel test. Since the mechanisms of activation by ERBB2 extracellular domain (ECD) variants are not fully understood, we aimed to clarify those mechanisms and the biological functions of ERBB2 E401G. Methods ERBB2 E401G was selected as VUS for analysis because multiple software tools predicted its pathogenicity. We prepared ERBB2 expression vectors with the E401G variant as well as vectors with S310F and E321G, which are known to be activating mutations. On the basis of wild-type ERBB2 or mutant ERBB2 expression in cell lines without ERBB2 amplification or variants, we evaluated the phosphorylation of human epidermal growth factor receptor 2 and related proteins, and investigated with molecular dynamics (MD) simulation the mechanisms conferred by the variants. The biological effects of ERBB2 E401G were also investigated, both in vitro and in vivo. Results We found that ERBB2 E401G enhances C-terminal phosphorylation in a way similar to S310F. MD simulation analysis revealed that these variants maintain the stability of the EGFR-HER2 heterodimer in a ligand-independent manner. Moreover, ERBB2 E401G-transduced cells showed an increased invasive capacity in vitro and an increased tumor growth capacity in vivo. Conclusion Our results provide important information on the activating mechanisms of ERBB2 extracellular domain (ECD) variants and illustrate a model workflow integrating wet and dry bench processes for the analysis of VUS detected with cancer gene panel tests.


Author(s):  
Chethan Ramamurthy ◽  
Eric W. Stutz ◽  
Martin Goros ◽  
Jonathan Gelfond ◽  
Teresa L. Johnson-Pais ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Shiyue Tao ◽  
Xiangyu Ye ◽  
Lulu Pan ◽  
Minghan Fu ◽  
Peng Huang ◽  
...  

Pan-cancer strategy, an integrative analysis of different cancer types, can be used to explain oncogenesis and identify biomarkers using a larger statistical power and robustness. Fine-mapping defines the casual loci, whereas genome-wide association studies (GWASs) typically identify thousands of cancer-related loci and not necessarily have a fine-mapping component. In this study, we develop a novel strategy to identify the causal loci using a pan-cancer and fine-mapping assumption, constructing the CAusal Pan-cancER gene (CAPER) score and validating its performance using internal and external validation on 1,287 individuals and 985 cell lines. Summary statistics of 15 cancer types were used to define 54 causal loci in 15 potential genes. Using the Cancer Genome Atlas (TCGA) training set, we constructed the CAPER score and divided cancer patients into two groups. Using the three validation sets, we found that 19 cancer-related variables were statistically significant between the two CAPER score groups and that 81 drugs had significantly different drug sensitivity between the two CAPER score groups. We hope that our strategies for selecting causal genes and for constructing CAPER score would provide valuable clues for guiding the management of different types of cancers.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3586
Author(s):  
Pedro Adolpho de Menezes Pacheco Serio ◽  
Gláucia Fernanda de Lima Pereira ◽  
Maria Lucia Hirata Katayama ◽  
Rosimeire Aparecida Roela ◽  
Simone Maistro ◽  
...  

Background: Triple-negative breast cancer (TNBC) and High-Grade Serous Ovarian Cancer (HGSOC) are aggressive malignancies that share similarities; however, different ages of onset may reflect distinct tumor behaviors. Thus, our aim was to compare somatic mutations in potential driver genes in 109 TNBC and 81 HGSOC from young (Y ≤ 40 years) and elderly (E ≥ 75 years) patients. Methods: Open access mutational data (WGS or WES) were collected for TNBC and HGSOC patients. Potential driver genes were those that were present in the Cancer Gene Census—CGC, the Candidate Cancer Gene Database—CCGD, or OncoKB and those that were considered pathogenic in variant effect prediction tools. Results: Mutational signature 3 (homologous repair defects) was the only gene that was represented in all four subgroups. The median number of mutated CGCs per sample was similar in HGSOC (Y:3 vs. E:4), but it was higher in elderly TNBC than it was in young TNBC (Y:3 vs. E:6). At least 90% of the samples from TNBC and HGSOC from Y and E patients presented at least one known affected TSG. Besides TP53, which was mutated in 67–83% of the samples, the affected TSG in TP53 wild-type samples were NF1 (yHGSOC and yTNBC), PHF6 (eHGSOC and yTNBC), PTEN, PIK3R1 and ZHFX3 (yTNBC), KMT2C, ARID1B, TBX3, and ATM (eTNBC). A few samples only presented one affected oncogene (but no TSG): KRAS and TSHR in eHGSOC and RAC1 and PREX2 (a regulator of RAC1) in yTNBC. At least ⅔ of the tumors presented mutated oncogenes associated with tumor suppressor genes; the Ras and/or PIK3CA signaling pathways were altered in 15% HGSOC and 20–35% TNBC (Y vs. E); DNA repair genes were mutated in 19–33% of the HGSOC tumors but were more frequently mutated in E-TNBC (56%). However, in HGSOC, 9.5% and 3.3% of the young and elderly patients, respectively, did not present any tumors with an affected CGC nor did 4.65% and none of the young and elderly TNBC patients. Conclusion: Most HGSOC and TNBC from young and elderly patients present an affected TSG, mainly TP53, as well as mutational signature 3; however, a few tumors only present an affected oncogene or no affected cancer-causing genes.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yin Liu ◽  
Yanling Chen ◽  
Lu Dang ◽  
Yixin Liu ◽  
Shisheng Huang ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Amélie Boichard ◽  
Scott M. Lippman ◽  
Razelle Kurzrock

AbstractAmplifications of oncogenic genes are often considered actionable. However, not all patients respond. Questions have therefore arisen regarding the degree to which amplifications, especially non-focal ones, mediate overexpression. We found that a subset of high-level gene amplifications (≥ 6 copies) (from The Cancer Genome Atlas database) was not over-expressed at the RNA level. Unexpectedly, focal amplifications were more frequently silenced than non-focal amplifications. Most non-focal amplifications were not silenced; therefore, non-focal amplifications, if over-expressed, may be therapeutically tractable. Furthermore, specific silencing of high-level focal or non-focal gene amplifications may explain resistance to drugs that target the relevant gene product.


Sign in / Sign up

Export Citation Format

Share Document