Artificial intelligence as structural estimation: Deep Blue, Bonanza, and AlphaGo
Summary This article clarifies the connections between certain algorithms to develop artificial intelligence (AI) and the econometrics of dynamic structural models, with concrete examples of three 'game AIs'. Chess-playing Deep Blue is a calibrated value function, whereas shogi-playing Bonanza is an estimated value function via Rust’s nested fixed-point (NFXP) method. AlphaGo’s 'supervised-learning policy network' is a deep-neural-network implementation of the conditional-choice-probability (CCP) estimation reminiscent of Hotz and Miller's first step; the construction of its 'reinforcement-learning value network' is analogous to their conditional choice simulation (CCS). I then explain the similarities and differences between AI-related methods and structural estimation more generally, and suggest areas of potential cross-fertilization.