Laboratory Tests with Entomogenous Bacteria and the Fungus Beauveria bassiana Against the Little House Fly Species Fannia canicularis and F. femoralis1 , 2

1972 ◽  
Vol 1 (1) ◽  
pp. 105-107 ◽  
Author(s):  
Irvin M. Hall ◽  
Howard T. Dulmage ◽  
Ken Y. Arakawa
1977 ◽  
Vol 3 (3) ◽  
pp. 269-278 ◽  
Author(s):  
E. C. Uebel ◽  
P. E. Sonnet ◽  
R. E. Menzer ◽  
R. W. Miller ◽  
W. R. Lusby

ChemInform ◽  
2010 ◽  
Vol 29 (15) ◽  
pp. no-no
Author(s):  
S. PIETZ ◽  
D. WOELKER ◽  
G. HAUFE

2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Monir M. M. El Husseini

AbstractLarval and adult populations of the Egyptian alfalfa weevil (EAW) Hypera brunneipennis (Boheman) (Coleoptera: Curculionidae) was monitored after application of the entomopathogenic fungus Beauveria bassiana in the alfalfa field (Medicago sativa L.) in two successive seasons 2014/2015 and 2015/2016. The second and last generation of the weevil on April 10, 2016, was controlled by only one application with the conidiospores of the entomopathogenic fungus B. bassiana (3 × 108 spores/ml). Accordingly, the larval population decreased from 16.07 ± 1.09 in season 2015/2016 to 7.37 ± 0.05 individuals/50 sweep net double strokes in season 2016/2017. Also, the adult weevil’s population decreased from 5.66 ± 0.8 to 2.55 ± 0.6 individuals/50 sweep net double strokes in the two seasons, respectively. 39.66% mortality rate was recorded in the Hypera brunneipennis adults aestivated under loose bark of the surrounding eucalyptus trees, which received the application of B. bassiana in the field. Another application with the fungus, targeting the second generation of the pest adults in alfalfa each season, will undoubtedly lead to a further decrease in the pest population.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laila Gasmi ◽  
Sehyeon Baek ◽  
Jong Cheol Kim ◽  
Sihyeon Kim ◽  
Mi Rong Lee ◽  
...  

AbstractBeauveria bassiana is a species complex whose isolates show considerable natural genetic variability. However, little is known about how this genetic diversity affects the fungus performance. Herein, we characterized the diversity of genes involved in various mechanisms of the infective cycle of 42 isolates that have different growth rates, thermotolerance and virulence. The analysed genes showed general genetic diversity measured as non-synonymous changes (NSC) and copy number variation (CNV), with most of them being subjected to positive episodic diversifying selection. Correlation analyses between NSC or CNV and the isolate virulence, thermotolerance and growth rate revealed that various genes shaped the biological features of the fungus. Lectin-like, mucin signalling, Biotrophy associated and chitinase genes NSCs correlated with the three biological features of B. bassiana. In addition, other genes (i.e. DNA photolyase and cyclophilin B) that had relatively conserved sequences, had variable CNs across the isolates which were correlated with the variability of either virulence or thermotolerance of B. bassiana isolates. The data obtained is important for a better understanding of population structure, ecological and potential impact when isolates are used as mycoinsecticides and can justify industrialization of new isolates.


Sign in / Sign up

Export Citation Format

Share Document